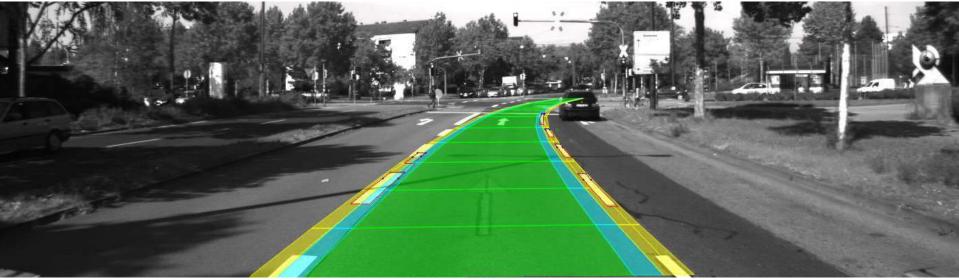
6.S094: Deep Learning for Self-Driving Cars

Lecture 1: Introduction to Deep Learning and Self-Driving Cars

cars.mit.edu



References: [13, 14]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Website: cars.mit.edu

最专业报告分享群:

•每日分享5+科技行业报告

- 同行业匹配,覆盖人工智能、大数据、机器人、 智慧医疗、智能家居、物联网等行业。
- 高质量用户,同频的人说同样的话

扫描右侧二维码, 或直接搜索关注公众号: 智东西(zhidxcom) 回复"报告群"加入

Administrative

- Website: <u>cars.mit.edu</u>
- Contact Email: <u>deepcars@mit.edu</u>
- Required:
 - Create an account on the website.
 - Follow the tutorial for each of the 2 projects.

• Recommended:

- Ask questions
- Win competition!

Lex Fridman Instructor

Benedikt Jenik TA

William Angell

TA

Spencer Dodd TA

Dan Brown TA

Website:

cars.mit.edu

Lex Fridman: fridman@mit.edu

January 2017

Target Audience

You may be:

- New to programming
- New to machine learning
- New to robotics

What you will learn:

- An overview of deep learning methods:
 - Deep Reinforcement Learning
 - Convolutional Neural Networks
 - Recurrent Neural Networks
- How deep learning can help improve each component of autonomous driving: perception, localization, mapping, control, planning, driver state

Target Audience

Not many equation slides like the following:

Lemma 0.1. Let C be a set of the construction.

Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We have to show that

 $\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$

Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on $X_{\acute{e}tale}$ we have

 $\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}$

where \mathcal{G} defines an isomorphism $\mathcal{F} \to \mathcal{F}$ of \mathcal{O} -modules.

* Though it would be more efficient, since the above is LaTeX code automatically generated character by character with Recurrent Neural Networks (RNNs)

[35] Andrej Karpathy. "The Unreasonable Effectiveness of Recurrent Neural Networks." (2015).

Massachusetts Institute of Technology	References: [35]	Course 6.S094:	Lex Fridman:	Website:	January
		Deep Learning for Self-Driving Ca	ars fridman@mit.edu	cars.mit.edu	2017

Guest Speakers

Mapping, Localization, and the Challenge of Autonomous Driving John Leonard Professor, MIT

Past, Present, and Future of Motion Planning in a Complex World Sertac Karaman Professor, MIT

From Research to Reality: Testing Self-Driving Cars on Boston Public Roads

<u>Karl lagnemma</u>

CEO, nuTonomy and Research Scientist, MIT

TBD

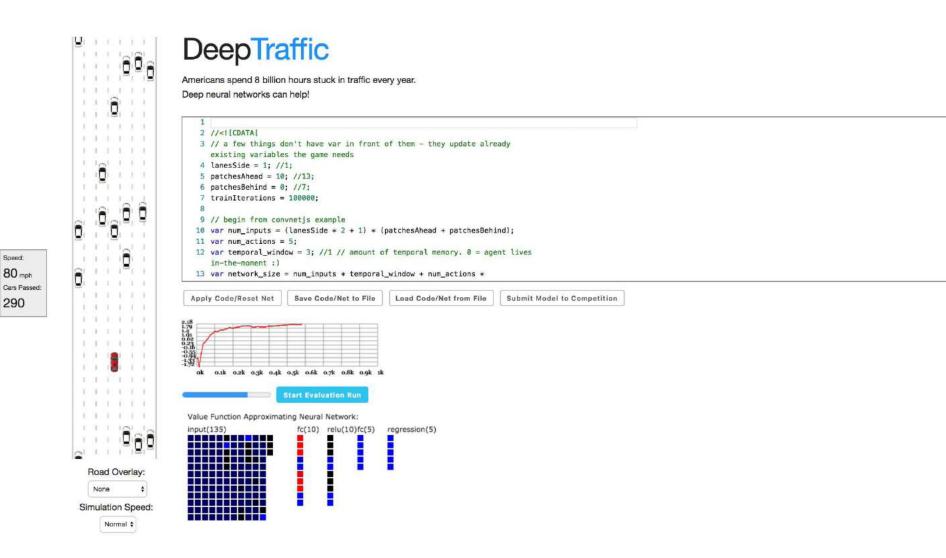
Chris Gerdes

Professor, Stanford

January

2017

Project: DeepTraffic



Project: DeepTesla

Course 6.S094: Deep Learning for Self-Driving Cars

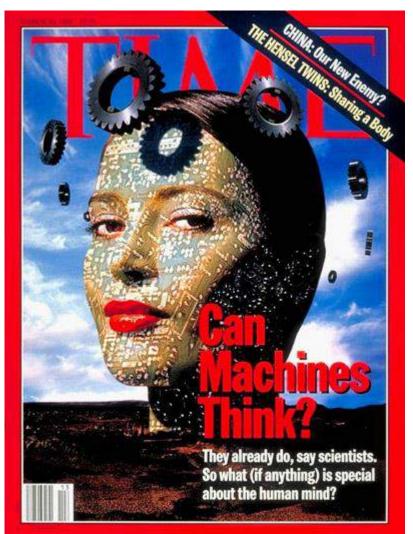
Lex Fridman: fridman@mit.edu

Schedule

Mon, Jan 9	Introduction to Deep Learning and Self Driving Cars		
Tue, Jan 10	Learning to Move: Reinforcement Learning for Motion Planning		
rue, Jan To	DeepTraffic: Solving Traffic with Deep Reinforcement Learning		
Wed, Jan 11	Learning to Drive: End-to-End Learning for the Full Driving Task		
	DeepTesla: End-to-End Learning from Human and Autopilot Driving		
Thu, Jan 12	Karl lagnemma: From Research to Reality: Testing Self-Driving Cars on Boston Public Roads		
Fri, Jan 13	John Leonard: Mapping, Localization, and the Challenge of Autonomous Driving		
Tue, Jan 17	Chris Gerdes: TBD		
Wed, Jan 18	Sertac Karaman: Past, Present, and Future of Motion Planning in a Complex World		
Thu, Jan 19	Learning to Share: Driver State Sensing and Shared Autonomy		
Fri, Jan 20	Eric Daimler: The Future of Artificial Intelligence Research and Development		
i II, Jali 20	Learning to Think: The Road Ahead for Human-Centered Artificial Intelligence		

Defining (Artificial) Intelligence

March 25, 1996

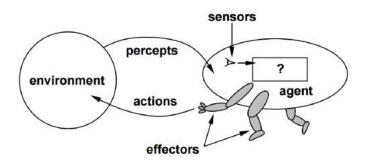


Special Purpose:

Can it achieve a well-defined finite set of goals?

General Purpose:

Can it achieve poorly-defined unconstrained set of goals?



(1995)

Course 6.S094:

Deep Learning for Self-Driving Cars

(2002)

Lex Fridman:

fridman@mit.edu

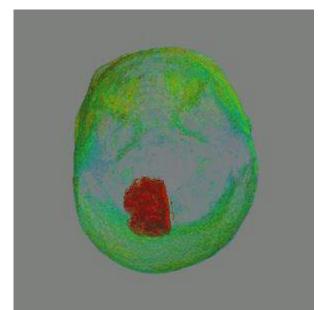
Website: cars.mit.edu

January 2017

ssachusetts References: [59, 60, 61]

Institute of

Fechnology



- Formal tasks: Playing board games, card games. Solving puzzles, mathematical and logic problems.
- **Expert tasks:** Medical diagnosis, engineering, scheduling, computer hardware design.
- Mundane tasks: Everyday speech, written language, perception, walking, object manipulation.

References: [49]

How Hard is Driving?

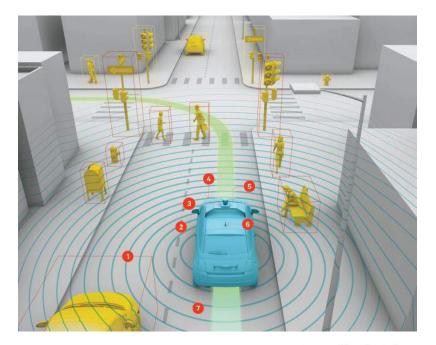
Open Question:

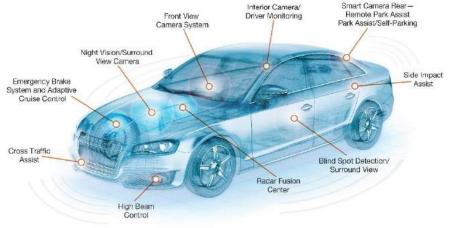
Is driving closer to chess or to everyday conversation?

Website:

cars.mit.edu

Chess Pieces: Self-Driving Car Sensors





External

- 1. Radar
- 2. Visible-light camera
- 3. LIDAR
- 4. Infrared camera
- 5. Stereo vision
- 6. GPS/IMU
- 7. CAN
- 8. Audio

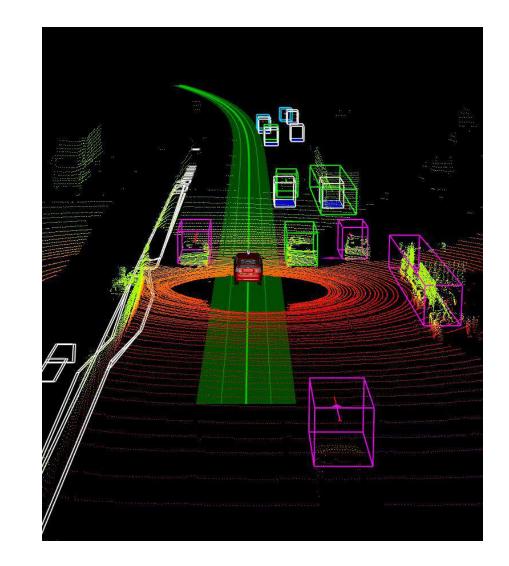
Internal

- 1. Visible-light camera
- 2. Infrared camera
- 3. Audio

References: [71]

Chess Pieces: Self-Driving Car Tasks

- Localization and Mapping: Where am I?
- Scene Understanding: Where is everyone else?
- Movement Planning: How do I get from A to B?
- **Driver State:** What's the driver up to?



DARPA Grand Challenge II (2006)

Result: Stanford's Stanley wins

References: [73]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

DARPA Urban Challenge (2007)

Result: CMU's Boss (Tartan Racing) wins

References: [74]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Industry Takes on the Challenge

Waymo / Google Self-Driving Car

Tesla Autopilot

nuTonomy

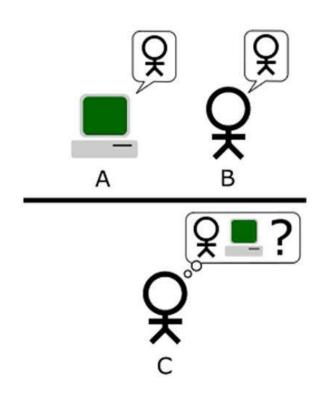
References: [75]

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: fridman@mit.edu

Website: cars.mit.edu

If Driving is a Conversation: How Hard is it to Pass the Turing Test?



- **1. Natural language processing** to enable it to communicate successfully
- 2. Knowledge representation to store information provided before or during the interrogation
- **3. Automated reasoning** to use the stored information to answer questions and to draw new conclusions

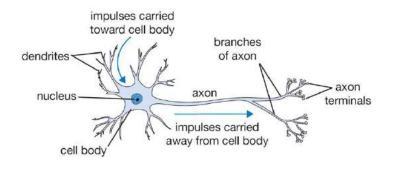
Turing Test:

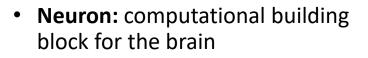
Can a computer be mistaken for a human more than 30% of the time?

Lex Fridman: fridman@mit.edu

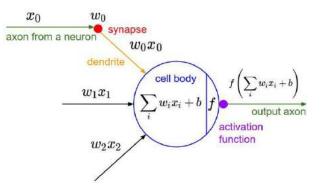
Website: cars.mit.edu

Neuron: Biological Inspiration for Computation





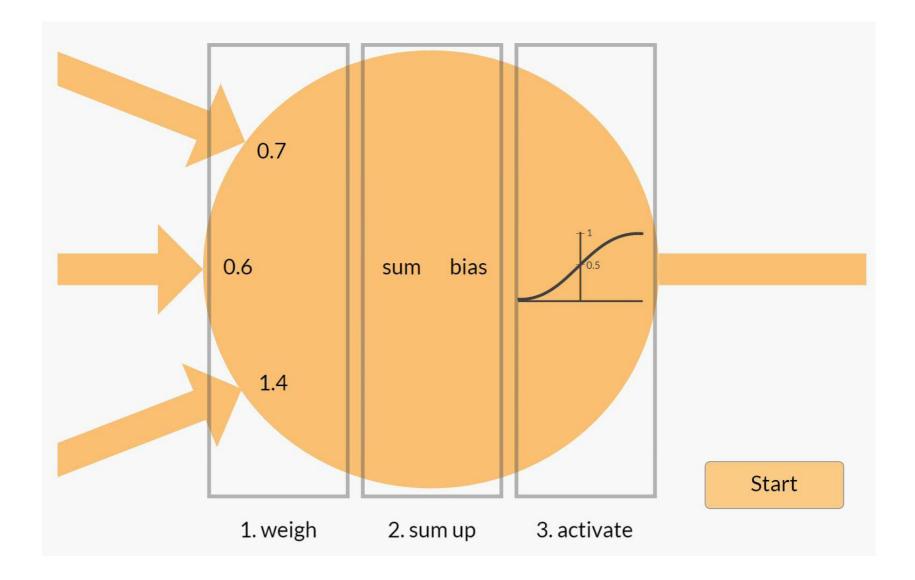
- Human brain:
 - ~100-1,000 trillion synapses



- (Artificial) Neuron: computational building block for the "neural network"
- (Artificial) neural network:
 - ~1-10 billion synapses

Human brains have ~10,000 computational power than computer brains.

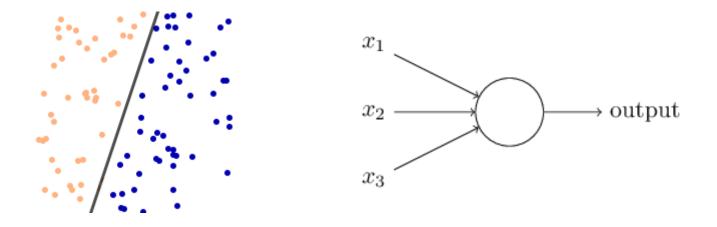
Perceptron: Forward Pass



References: [78]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

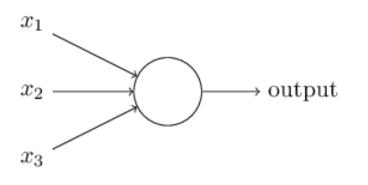
Perceptron Algorithm

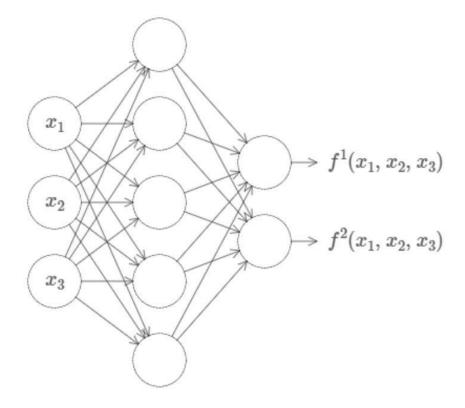


Provide training set of (input, output) pairs and run:

- 1. Initialize perceptron with random weights
- 2. For the inputs of an example in the training set, compute the Perceptron's output
- 3. If the output of the Perceptron does not match the output that is known to be correct for the example:
 - 1. If the output should have been 0 but was 1, decrease the weights that had an input of 1.
 - 2. If the output should have been 1 but was 0, increase the weights that had an input of 1.
- 4. Go to the next example in the training set and repeat steps 2-4 until the Perceptron makes no more mistakes

Neural Networks are Amazing



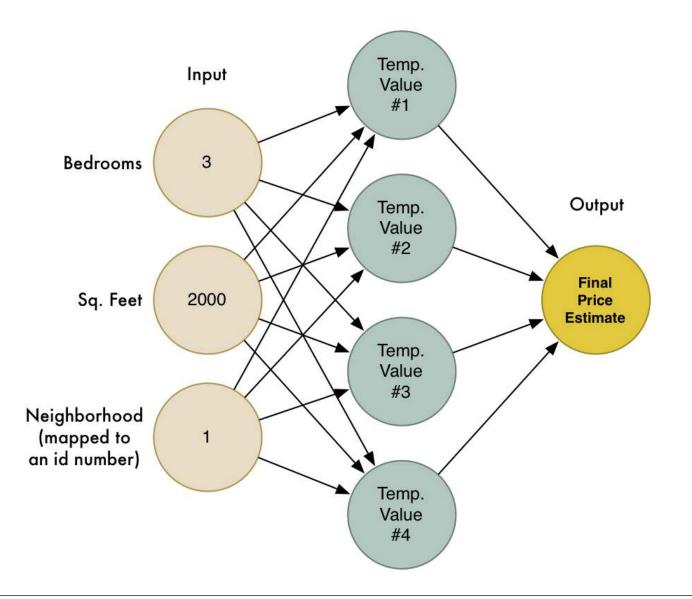


Universality: For any arbitrary function f(x), there exists a neural network that closely approximate it for any input x

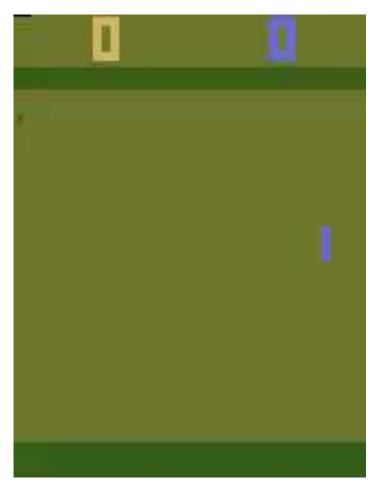
Universality is an incredible property!* And it holds for just 1 hidden layer.

* Given that we have good algorithms for training these networks.

Special Purpose Intelligence

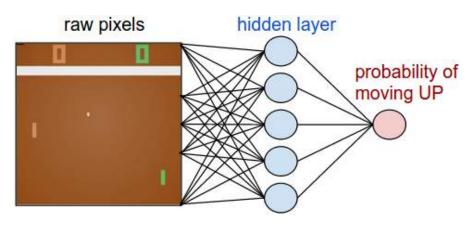


Neural Networks are Amazing: General Purpose Intelligence



Andrej Karpathy. "Deep Reinforcement Learning: Pong from Pixels." 2016.

Policy Network:

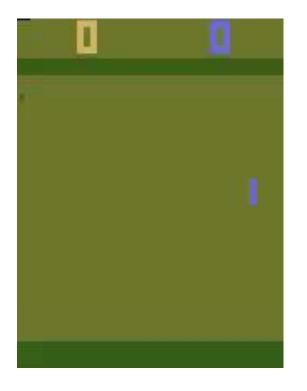


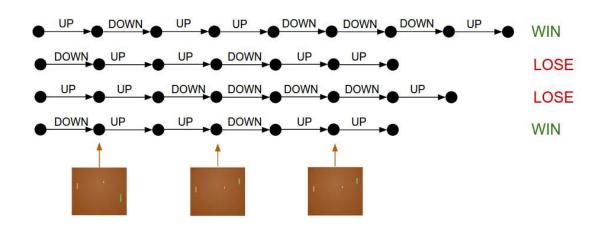
- 80x80 image (difference image)
- 2 actions: up or down
- 200,000 Pong games

This is a step towards general purpose artificial intelligence!

References: [63]

Neural Networks are Amazing: General Purpose Intelligence





- Every (state, action) pair is rewarded when the final result is a win.
- Every (state, action) pair is punished when the final result is a loss.

The fact that this works at all is amazing!

It could be called "general intelligence" but not yet "human-level" intelligence...

Current Drawbacks

- Lacks Reasoning:
 - Humans only need simple instructions:
 "You're in control of a paddle and you can move it up and down, and your task is to bounce the ball past the other player controlled by AI."
- Requires **big** data: inefficient at learning from data
- Requires supervised data: costly to annotate real-world data
- Need to manually select network structure
- Needs hyperparameter tuning for training:
 - Learning rate
 - Loss function
 - Mini-batch size
 - Number of training iterations
 - Momentum: gradient update smoothing
 - Optimizer selection
- Defining a good reward function is difficult...

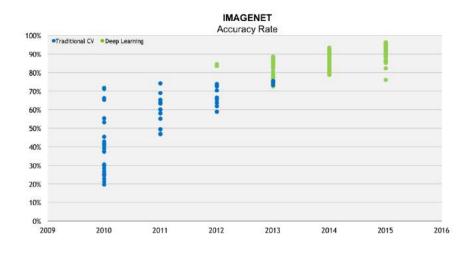
Current Drawbacks

Defining a good reward function is difficult... **Coast Runners:** Discovers local pockets of high reward ignoring the "implied" bigger picture goal of finishing the race.

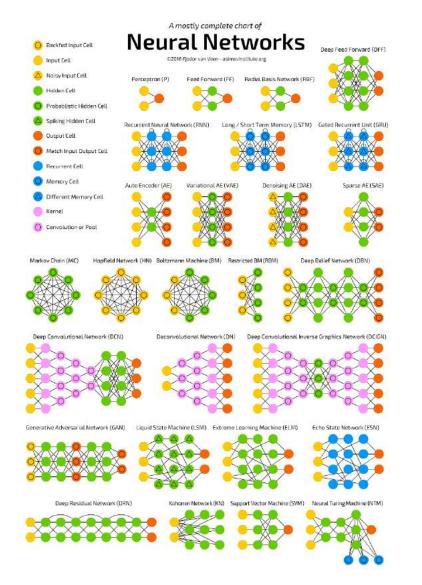
In addition, specifying a reward function for self-driving cars raises ethical questions...

Deep Learning Breakthroughs: What Changed?

- Compute CPUs, GPUs, ASICs
- Organized large(-ish) datasets Imagenet
- Algorithms and research: Backprop, CNN, LSTM
- Software and Infrastructure Git, ROS, PR2, AWS, Amazon Mechanical Turk, TensorFlow, ...
- Financial backing of large companies Google, Facebook, Amazon, ...



Useful Deep Learning Terms



References: [4]

assachusetts

Institute of

Fechnology

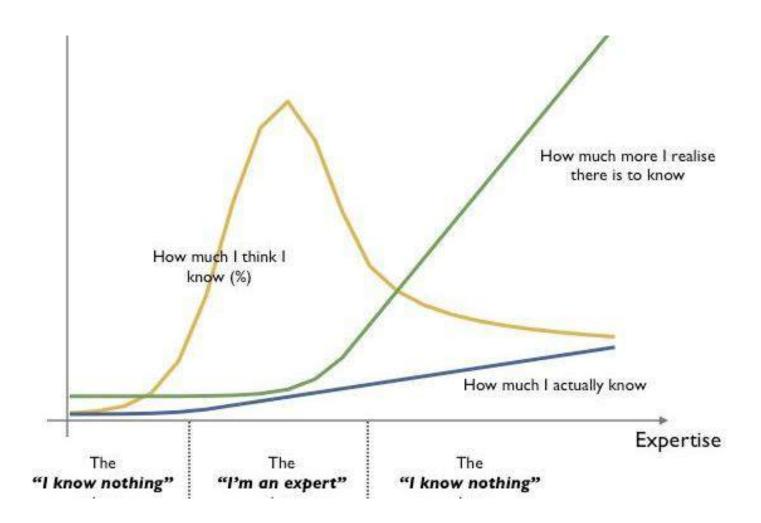
- Basic terms:
 - Deep Learning = Neural Networks
 - Deep Learning is a subset of Machine Learning
- Terms for neural networks:
 - MLP: Multilayer Perceptron
 - DNN: Deep neural networks
 - RNN: Recurrent neural networks
 - LSTM: Long Short-Term Memory
 - CNN or ConvNet: Convolutional neural networks
 - DBN: Deep Belief Networks
- Neural network operations:
 - Convolution
 - Pooling
 - Activation function
 - Backpropagation

Asimov Institute. "A mostly complete chart of neural networks."

January

2017

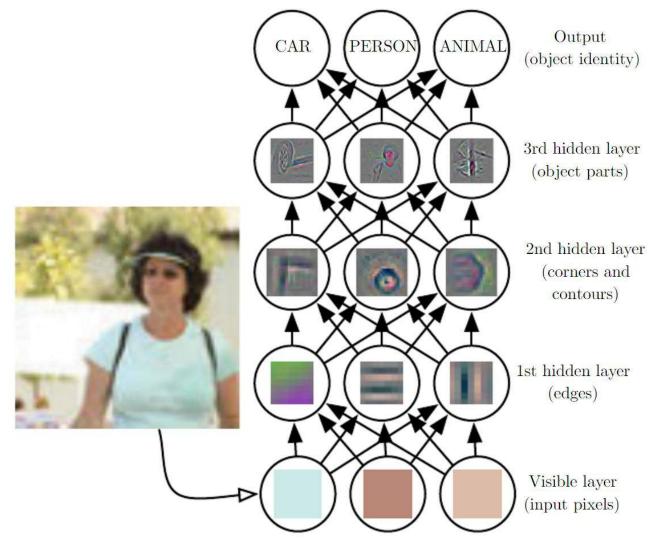
Neural Networks: Proceed with Caution



References: [50]

Course 6.S094: Deep Learning for Self-Driving Cars

Deep Learning is **Representation Learning**

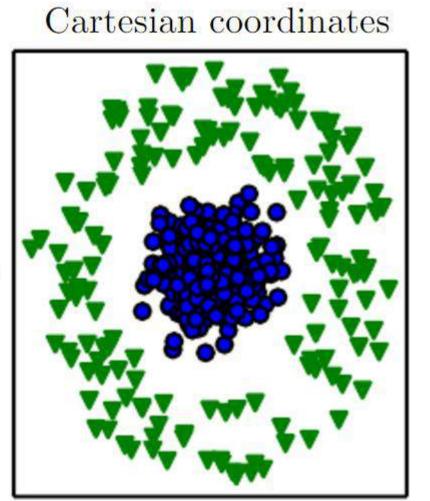


[20] Goodfellow et al. "Deep learning." (2017).

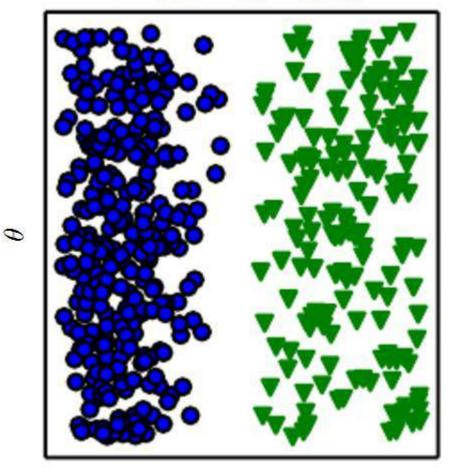
References: [20]

Lex Fridman: fridman@mit.edu

Representation Matters



Polar coordinates



r

cars.mit.edu

3

X

References: [20]

assachusetts

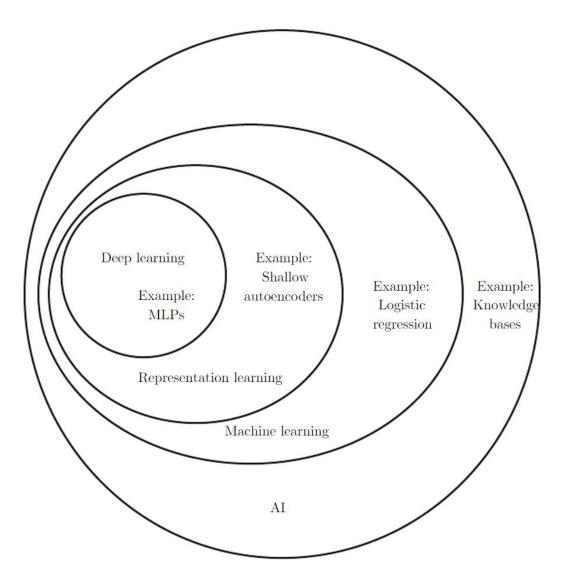
Institute of

Technology

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Website:

Deep Learning is **Representation Learning**

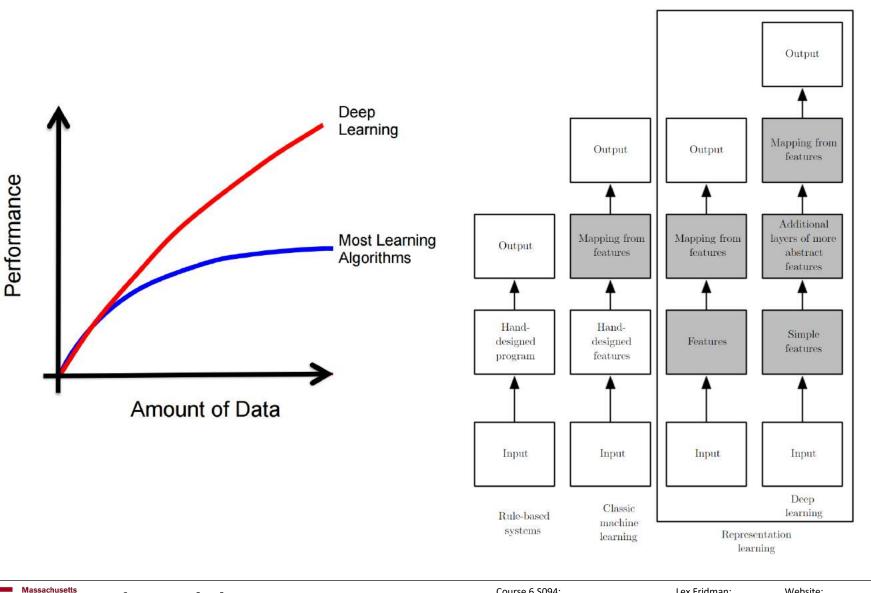


References: [20]

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: fridman@mit.edu

Deep Learning: Scalable Machine Learning



References: [20]

Institute of

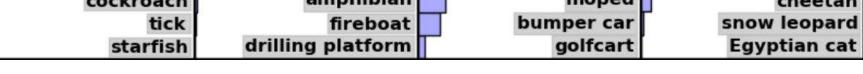
Technology

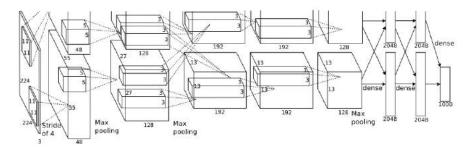
Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: s fridman@mit.edu

Website: du cars.mit.edu

Applications: Object Classification in Images





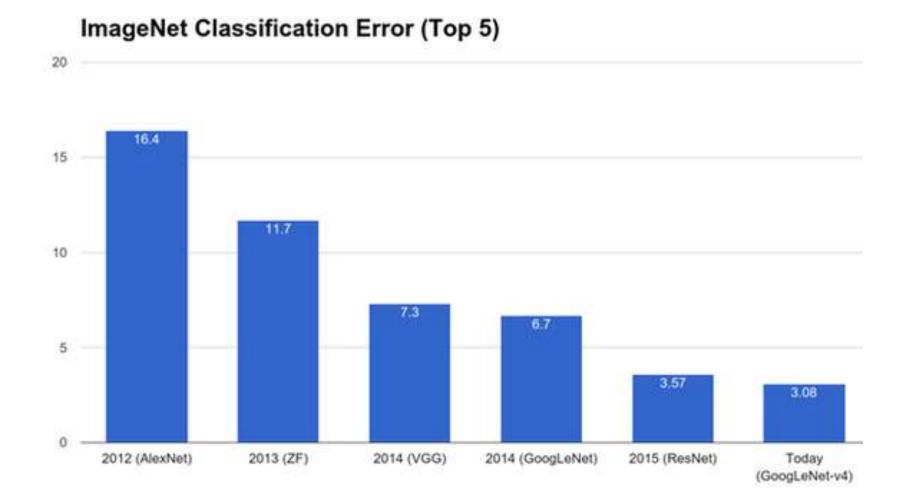
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.

References: [4]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Website: cars.mit.edu

Pause: Progress on ImageNet



Computer Vision is Hard: Illumination Variability

Massachusetts Institute of Technology References: [66]

Course 6.S094: Le Deep Learning for Self-Driving Cars fr

Lex Fridman: Website: fridman@mit.edu cars.mit.edu

Computer Vision is Hard: Pose Variability and Occlusions

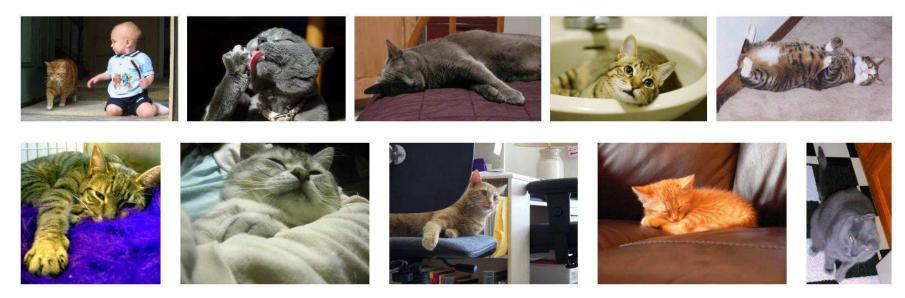


Figure 1. The deformable and truncated cat. Cats exhibit (al-

Parkhi et al. "The truth about cats and dogs." 2011.

References: [69]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Computer Vision is Hard: Intra-Class Variability

Parkhi et al. "Cats and dogs." 2012.

References: [70]

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: fridman@mit.edu

.edu cars.mit.edu

Pause: Object Recognition / Classification



	black widow	lifeboat		go-kart	jaguar
	cockroach	amphibian		moped	cheetah
П	tick	fireboat		bumper car	snow leopard
T	starfish	drilling platform	Γ	golfcart	Egyptian cat

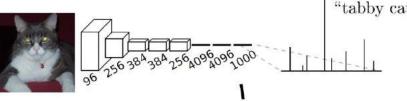
January

2017

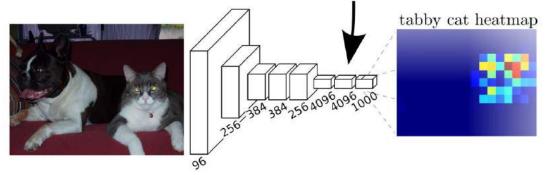
Course 6.S094: Deep Learning for Self-Driving Cars

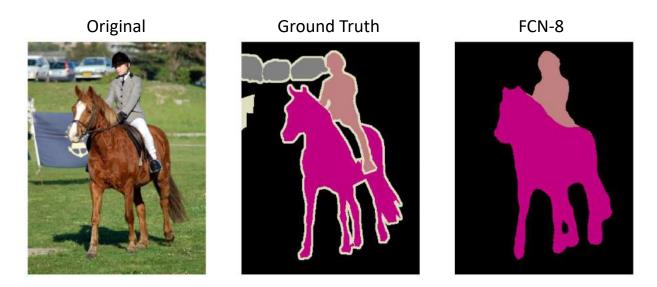
"tabby cat"

Pause: Segmentation



convolutionalization

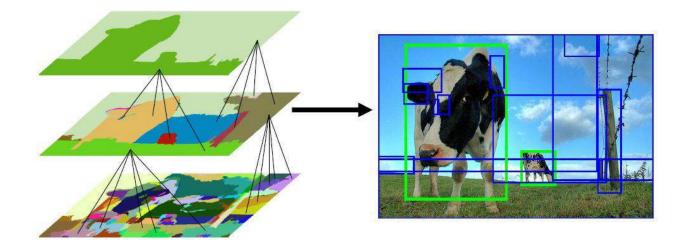




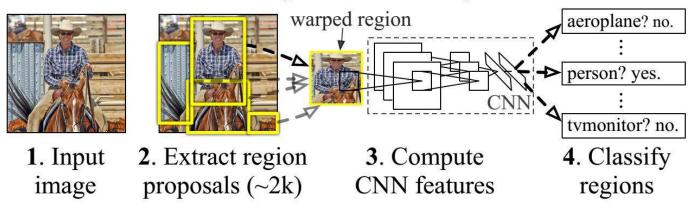
Source: Long et al. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.

Lex Fridman: fridman@mit.edu

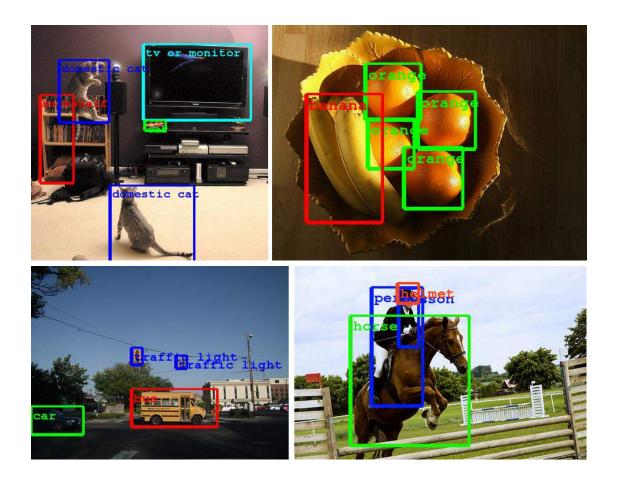
Pause: Object Detection



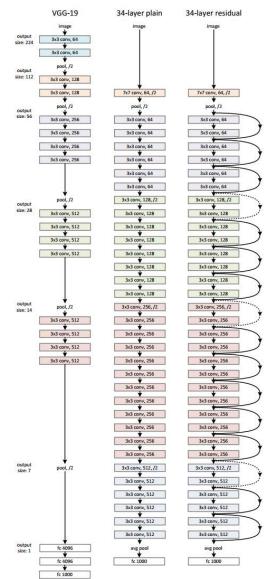
R-CNN: Regions with CNN features



Applications: Object Detection and Localization in Images



He Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Su. "Deep residual learning for image recognition." (2015).



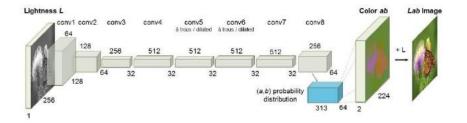
References: [31, 32]

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: fridman@mit.edu

Website: cars.mit.edu

Applications: Colorization of Images

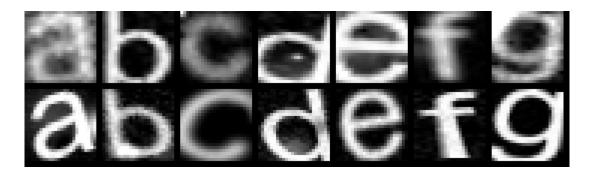


Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Colorful Image Colorization." (2016).

References: [25, 26]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Applications: Automatic Translation of Text in Images

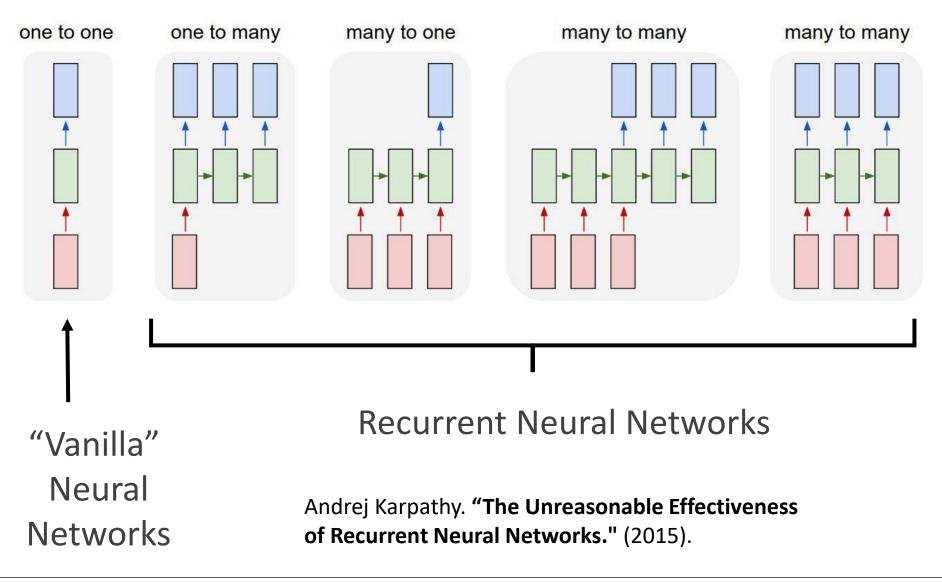


Google Translate

References: [30]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

(Pause...) Flavors of Neural Networks



References: [35]

assachusetts

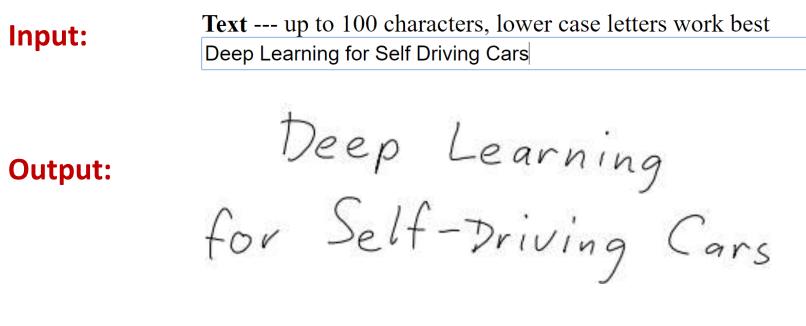
Institute of

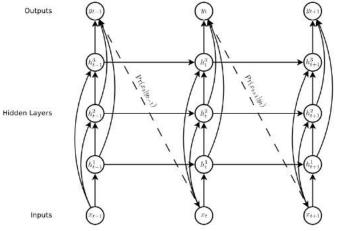
Fechnology

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: Cars fridman@mit.edu

Applications: Handwriting Generation from Text





Alex Graves. "Generating sequences with recurrent neural networks." (2013).

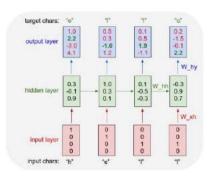
ssachusetts istitute of chnology

References: []

Course 6.S094: Lex Fridman: Website: Deep Learning for Self-Driving Cars fridman@mit.edu

Applications: Character-Level Text Generation

Naturalism and decision for the majority of Arab countries' capitalide was grounded by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal in the [[Protestant Immineners]], which could be said to be directly in Cantonese Communication, which followed a ceremony and set inspired prison, training.



Andrej Karpathy. "The Unreasonable Effectiveness of Recurrent Neural Networks." (2015).

Code: https://github.com/karpathy/char-rnn

References: [35, 39]

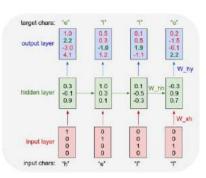
Course 6.S094:Lex Fridman:Website:JanuaryDeep Learning for Self-Driving Carsfridman@mit.educars.mit.edu2017

Applications: Character-Level Text Generation

Life Is About The Weather! Life Is About The (Wild) Truth About Human-Rights Life Is About The True Love Of Mr. Mom Life Is About Where He Were Now Life Is About Kids Life Is About Kids Life Is About What It Takes If Being On The Spot Is Tough Life Is About... An Eating Story Life Is About The Truth Now

The meaning of life is literary recognition.

The meaning of life is the tradition of the ancient human reproduction



Andrej Karpathy. "The Unreasonable Effectiveness of Recurrent Neural Networks." (2015).

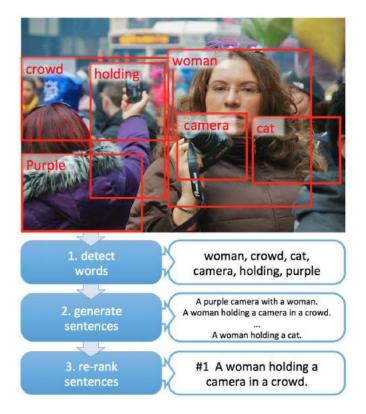
Code: https://github.com/karpathy/char-rnn

References: [35, 39]

Course 6.S094:Lex Fridman:Website:JanuaryDeep Learning for Self-Driving Carsfridman@mit.educars.mit.edu2017

Applications: Image Caption Generation

a man sitting on a couch with a dog a man sitting on a chair with a dog in his lap



References: [43 – Fang et al. 2015]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Applications: Image Question Answering

COCOQA 33827 What is the color of the cat? Ground truth: black IMG+BOW: black (0.55) 2-VIS+LSTM: black (0.73) BOW: gray (0.40)

COCOOA 33827a What is the color of the couch? Ground truth: red IMG+BOW: red (0.65) 2-VIS+LSTM: black (0.44) BOW: red (0.39)

assachusetts

Institute of

Technology

DAQUAR 1522 How many chairs are there? Ground truth: two IMG+BOW: four (0.24) 2-VIS+BLSTM: one (0.29) LSTM: four (0.19)

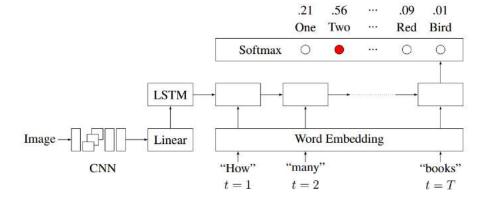
DAOUAR 1520 How many shelves are there? Ground truth: three IMG+BOW: three (0.25) 2-VIS+BLSTM: two (0.48) LSTM: two (0.21)

COCOQA 14855 Where are the ripe bananas sitting? Ground truth: basket IMG+BOW: basket (0.97) 2-VIS+BLSTM: basket (0.58) BOW: bowl (0.48)

COCOOA 14855a What are in the basket? Ground truth: bananas IMG+BOW: bananas (0.98) 2-VIS+BLSTM: bananas (0.68) BOW: bananas (0.14)

DAQUAR 585 What is the object on the chair? Ground truth: pillow IMG+BOW: clothes (0.37) 2-VIS+BLSTM: pillow (0.65) LSTM: clothes (0.40)

DAOUAR 585a Where is the pillow found? Ground truth: chair IMG+BOW: bed (0.13)2-VIS+BLSTM: chair (0.17) LSTM: cabinet (0.79)



References: [40]

Ren et al. "Exploring models and data for image question answering." 2015.

Code: https://github.com/renmengye/imagega-public

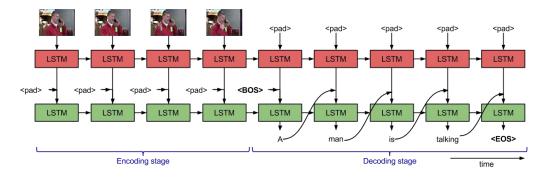
Course 6.S094: Lex Fridman: Deep Learning for Self-Driving Cars fridman@mit.edu

Applications: Video Description Generation

Correct descriptions.

S2VT: A man is doing stunts on his bike.

S2VT: A herd of zebras are walking in a field.



Relevant but incorrect descriptions.

S2VT: A small bus is running into a building.

S2VT: A man is cutting a piece of a pair of a paper.

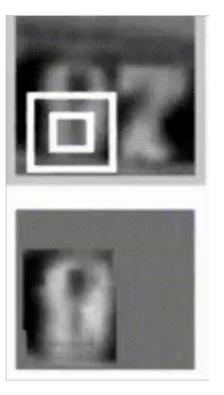
Venugopalan et al.

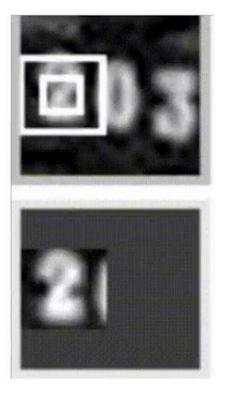
"Sequence to sequence-video to text." 2015.

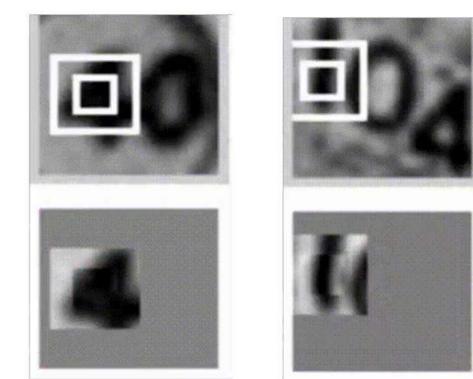
Code: https://vsubhashini.github.io/s2vt.html

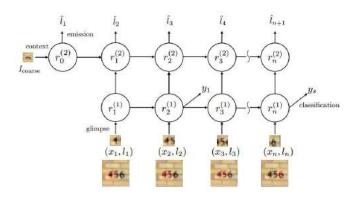
References: [41, 42]

Applications: Modeling Attention Steering









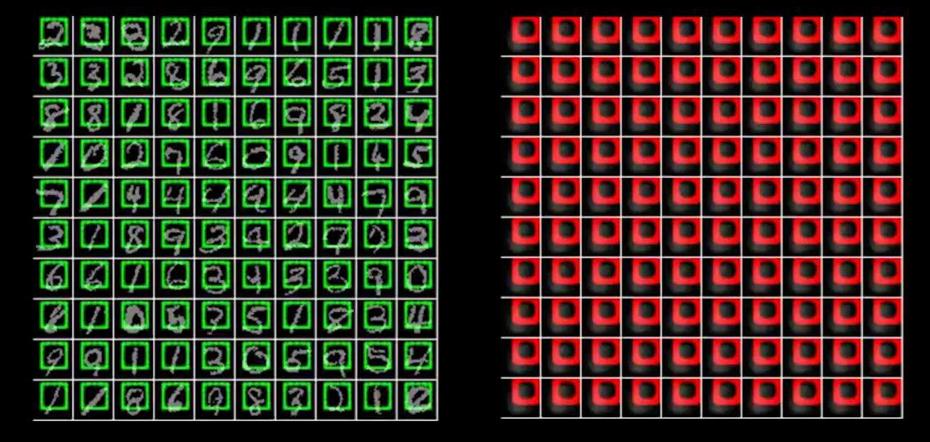
Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. "Multiple object recognition with visual attention." (2014).

References: [35, 36]

Applications: Drawing with Selective Attention

Reading

Writing



Gregor et al. "DRAW: A recurrent neural network for image generation." (2015).

Code: https://github.com/ericjang/draw

assachusetts

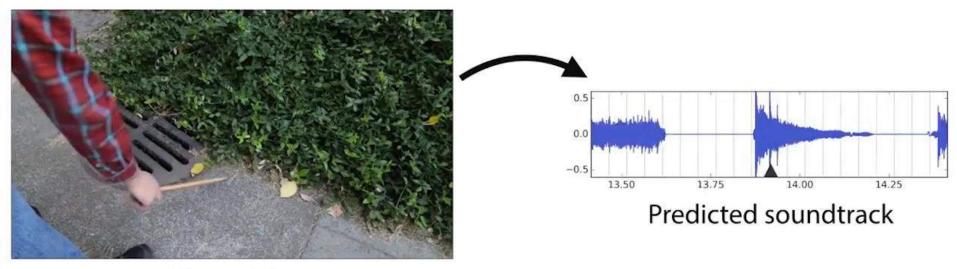
Institute of

Fechnology

Course 6.S094:	Lex Fridman:
Deep Learning for Self-Driving Cars	fridman@mi

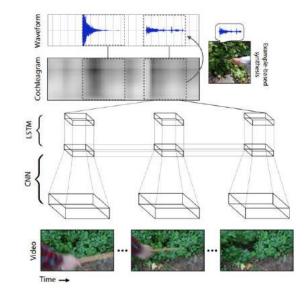
an: Website: Omit.edu cars.mit.edu

Applications: Adding Audio to Silent Film



Silent video

Owens, Andrew, Phillip Isola, Josh McDermott, Antonio Torralba, Edward H. Adelson, and William T. Freeman. "Visually Indicated Sounds." (2015).



References: [28, 29]

Course 6.S094: Deep Learning for Self-Driving Cars Website: cars.mit.edu January

2017

Moravec's Paradox: The "Easy" Problems are Hard

Soccer is harder than Chess

References: [8, 9]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu Website: cars.mit.edu

Moravec's Paradox: The "Easy" Problems are Hard

References: [8, 9]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Website: lu cars.mit.edu

Question: Why?

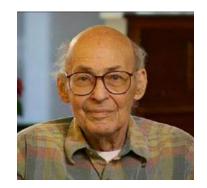
Answer: Data

Visual perception: 540 millions years of data Bipedal movement: 230+ million years of data Abstract thought: 100 thousand years of data

"Encoded in the large, highly evolved sensory and motor portions of the human brain is a **billion years of experience** about the nature of the world and how to survive in it.... Abstract thought, though, is a new trick, perhaps less than **100 thousand years** old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it." - Hans Moravec, Mind Children (1988)

Hans Moravec (CMU)

Rodney Brooks (MIT)



Marvin Minsky (MIT)

References: [6, 7, 11]

Lex Fridman: fridman@mit.edu Website: January cars.mit.edu 2017

Walking is Hard. How Hard is Driving?

Human performance: 1 fatality per 100,000,000 miles

Error rate for AI to improve on: 0.00001%

Challenges:

- Snow
- Heavy rain
- Big open parking lots
- Parking garages
- Any pedestrian behaving irresponsibly or just unpredictably
- Reflections, dynamics blinding ones
- Merging into a high-speed stream of oncoming traffic

Google Self-Driving Car: Driver Disengagements

Month	Number Disengages	Autonomous miles on public roads
2014/09	2	4207.2
2014/10	19	23971.1
2014/11	21	15836.6
2014/12	43	9413.1
2015/01	53	18192.1
2015/02	14	18745.1
2015/03	30	22204.2
2015/04	51	31927.3
2015/05	13	38016.8
2015/06	11	42046.6
2015/07	29	34805.1
2015/08	7	38219.8
2015/09	16	36326.6
2015/10	16	47143.5
2015/11	16	43275.9
Total	341	424331

References: [77]

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: fridman@mit.edu

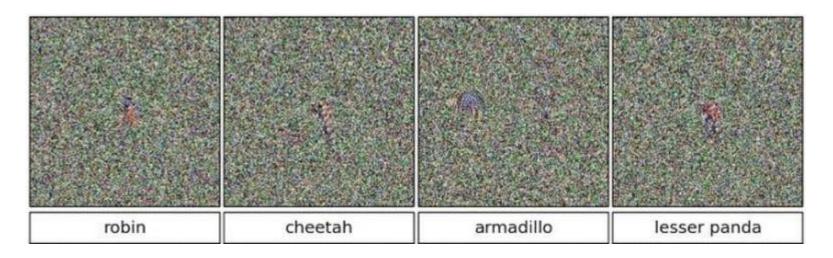
Google Self-Driving Car: Driver Disengagements

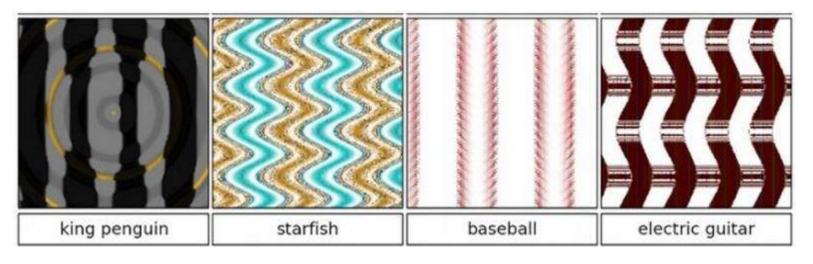
Cause	Sep 2014	Oct 2014	Nov 2014	Dec 2014	Jan 2015	Feb 2015	Mar 2015	Apr 2015	May 2015		Jul 2015	Aug 2015	Sep 2015		Nov 2015	Total
disengage for weather conditions during testing	0	0	0	0	1	5	0	6	0	0	0	0	0	0	1	13
disengage for a recklessly behaving road user	1	0	1	1	1	3	3	7	0	0	0	2	1	0	3	23
disengage for hardware discrepancy	0	1	0	0	2	1	0	1	0	5	8	1	8	8	4	39
disengage for unwanted maneuver of the vehicle	0	3	6	14	15	1	3	2	1	0	3	2	0	3	2	55
disengage for a perception discrepancy	1	2	3	18	19	2	20	30	4	4	8	0	4	3	1	119
disengage for incorrect behavior prediction of other traffic participants	0	2	2	0	1	0	2	0	0	0	0	0	0	1	0	8
disengage for a software discrepancy	0	11	9	9	14	2	1	5	8	2	9	2	3	1	4	80
disengage for construction zone during testing	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0	3
disengage for emergency vehicle during testing	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Total	2	19	21	43	53	14	30	51	13	11	29	7	16	16	16	341

References: [77]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Robustness: >99.6% Confidence in the Wrong Answer



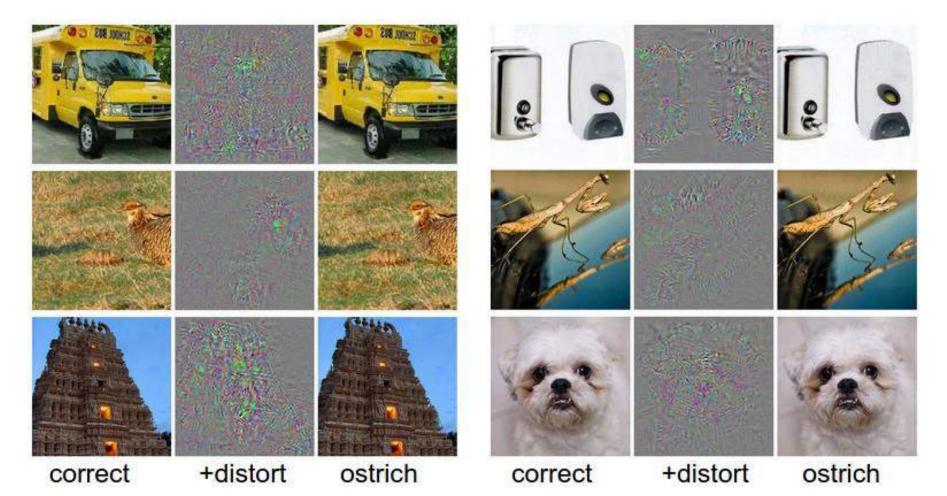


Nguyen et al. "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images." 2015.

127	Massachusetts	References: [67]	Cou	urse 6.S094:	Lex Fridman:	Website:	January
	Massachusetts Institute of Technology		ep Learning for Self-Driving Cars	fridman@mit.edu	cars.mit.edu	2017	

Ш

Robustness: Fooled by a Little Distortion



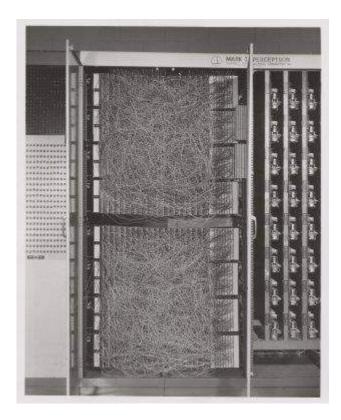
Szegedy et al. "Intriguing properties of neural networks." 2013.

References: [68]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Website: cars.mit.edu

Mark I Perceptron



- Frank Rosenblatt
- 400 pixel image input
- Weights encoded in potentiometers
- Weight updated by electric motors

The New York Times

NEW NAVY DEVICE LEARNS BY DOING

July 8, 1958

"The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence... Dr. Frank Rosenblatt, a research psychologist at the Cornell Aeronautical Laboratory, Buffalo, said Perceptrons might be fired to the planets as mechanical space explorers"

January

2017

AI Winters

Two major episodes:

- 1974-80
- 1987-93

Smaller episodes:

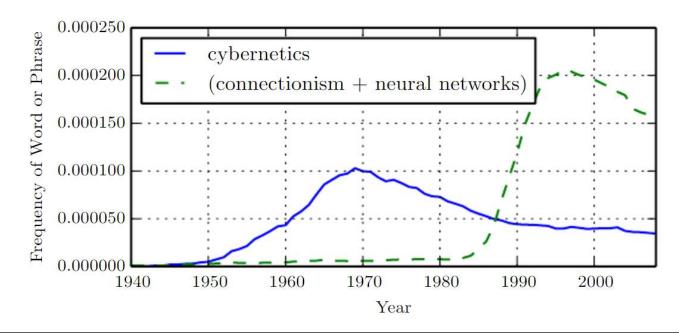
- 1966: the failure of machine translation
- 1970: the abandonment of connectionism
- 1971-75: DARPA's frustration with the Speech Understanding Research program
- 1973: the large decrease in AI research in the UK in response to the Lighthill report.
- 1973–74: DARPA's cutbacks to academic Al research in general
- 1987: the collapse of the Lisp machine market
- 1988: the cancellation of new spending on AI by the Strategic Computing Initiative
- 1993: expert systems slowly reaching the bottom
- 1990s: the quiet disappearance of the fifthgeneration computer project's original goals.

"In no part of the field have discoveries made so far produced the major impact that was then promised."

Massachusetts Institute of Technology

The Seasons of Deep Learning

- 1940s-1960s: Cybernetics
 - Biological learning (1943)
 - Perceptron (1958)
- 1980s-1990s: Connectionism
 - Backpropagation
- 2006-: Deep Learning

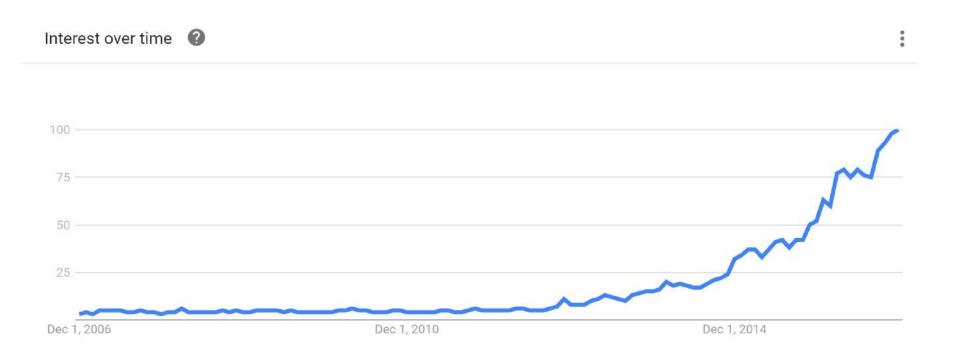


References: [18]

Course 6.S094:LexDeep Learning for Self-Driving Carsfrid

Lex Fridman: fridman@mit.edu

3rd Summer of Deep Learning



Google trends: "Deep Learning"

References: [21]

Course 6.S094:Lex Fridman:Website:Deep Learning for Self-Driving Carsfridman@mit.educars.mit.edu

January

2017

Proceed with Caution: What's Next for Deep Learning?

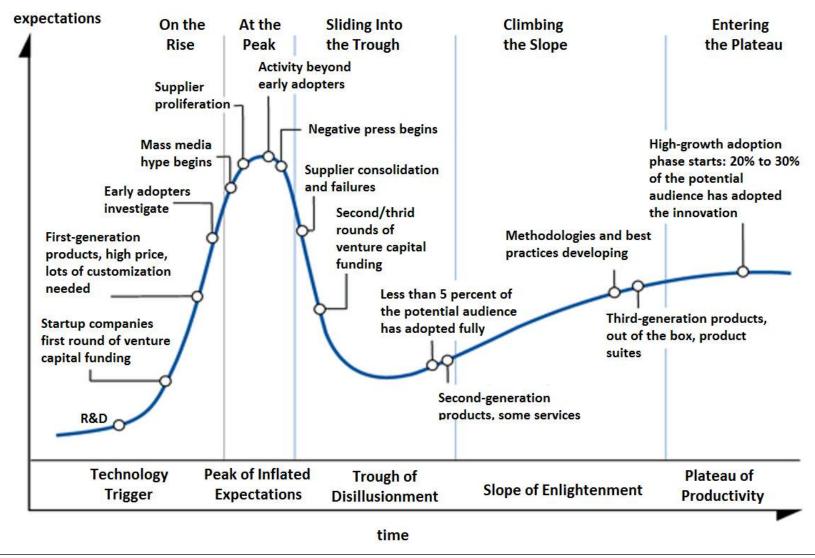
(5 year vision)

- Ilya Sutskever, Research Director of OpenAI: Deeper models, models that need fewer examples for training.
- Christian Szegedy, Senior Research Scientist at Google: Become so efficient that they will be able to run on cheap mobile devices.
- Pieter Abbeel, Associate Professor in Computer Science at UC Berkeley: Significant advances in deep unsupervised learning and deep reinforcement learning.
- Ian Goodfellow, Senior Research Scientist at Google:

Neural networks that **can summarize what happens in a video clip**, and will be able to generate short videos. Neural networks that model the behavior of genes, drugs, and proteins and then used to design new medicines.

- Koray Kavukcuoglu & Alex Graves, Research Scientists at Google DeepMind: An increase in multimodal learning, and a stronger focus on learning that persists beyond individual datasets.
- Charlie Tang, Machine Learning group, University of Toronto: Deep learning algorithms ported to commercial products, much like how the face detector was incorporated into consumer cameras in the past 10 years.

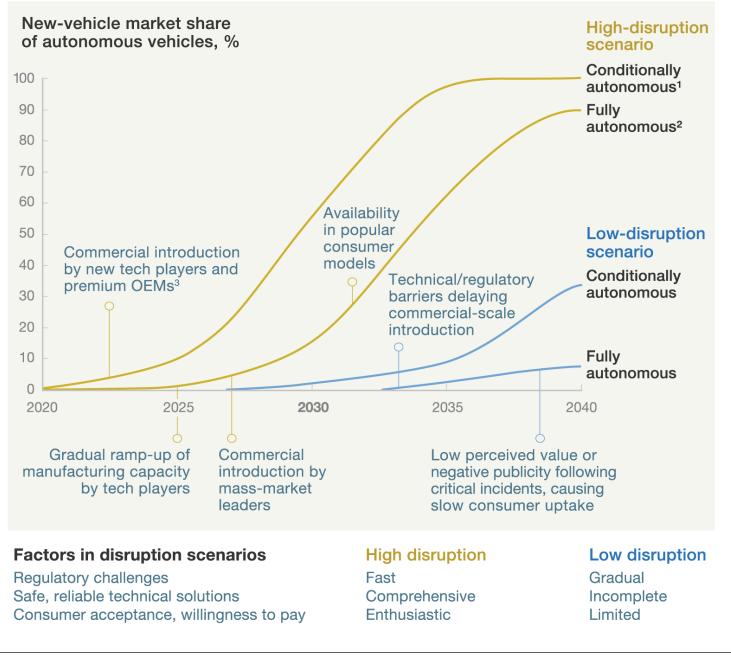
Gartner Hype Cycle



References: [21]

Course 6.S094: Lex Deep Learning for Self-Driving Cars frid

Lex Fridman: Website: fridman@mit.edu cars.mit.edu



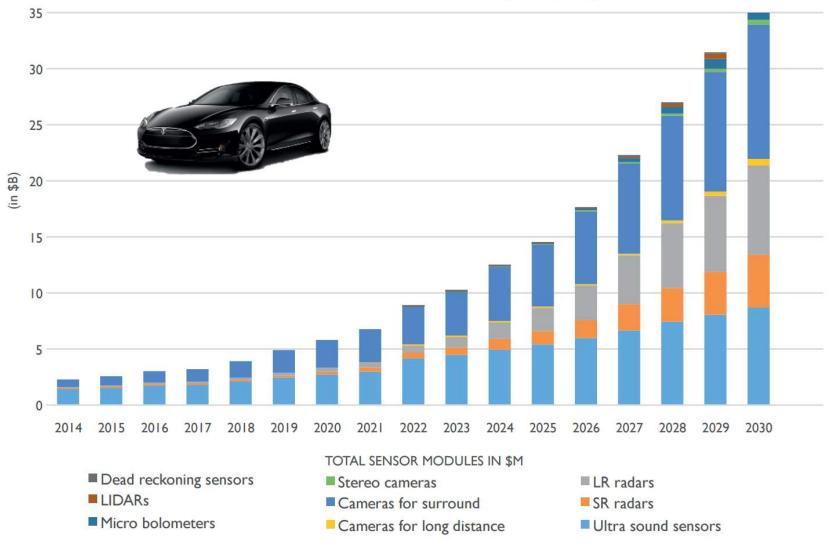
Website: cars.mit.edu January 2017

assachusetts Institute of Technology

References: [51]

Course 6.S094: Deep Learning for Self-Driving Cars Lex Fridman: fridman@mit.edu

Sensor modules market value for autonomous cars from 2015 to 2030 (in \$B)



 Massachusetts Institute of Technology
 Refere

References: [51]

Course 6.S094: Deep Learning for Self-Driving Cars

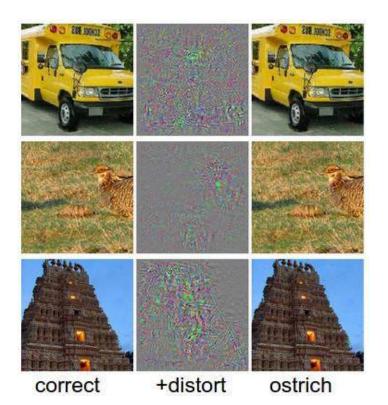
Lex Fridman: fridman@mit.edu

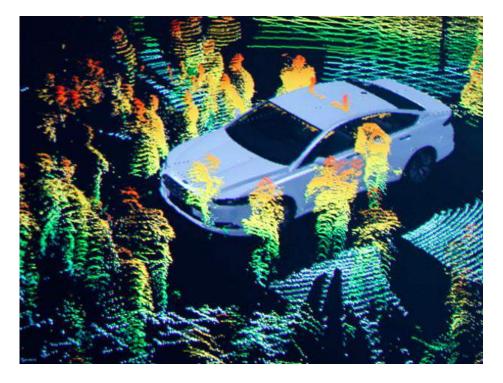
Website: cars.mit.edu

Attention to (AI) Drivers: Proceed with Caution

Camera Spoofing

LIDAR Spoofing





References: [68, 72]

Course 6.S094:LexDeep Learning for Self-Driving Carsfrid

Lex Fridman: fridman@mit.edu

Website: cars.mit.edu

- Interface: Python, (C++)
- Automatic Differentiation
- Multi GPU, Cluster Support
- Currently most popular

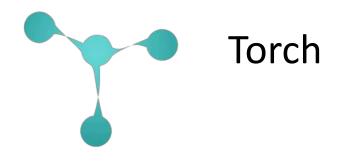
Keras

- On top of Tensorflow (and Theano)
- Interface: Python
- Goal: provide a simplified interface

• Also: TF Learn, TF Slim

January

2017



- Used by researchers doing lower level (closer to the details) neural net work
- Interface: Lua
- Fragmented across different plugins

facebook

Course 6.S094:Lex FDeep Learning for Self-Driving Carsfridm

January

2017

theano

- Interface: Python (tight NumPy integration)
- One of the earlier frameworks with GPU support
- Encourages low-level tinkering

Université 📩 🛛 Montreal Institute for Learning Algorithms

cuDNN

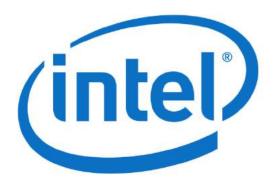
- The library that most frameworks use for doing the actual computation
- Implements primitive neural network functions in CUDA on the GPU

- Multi GPU Support (scales well)
- Interface: Python, R, Julia, Scala, Go, Javascript ...

Course 6.S094: Deep Learning for Self-Driving Cars

Lex Fridman: fridman@mit.edu

- Interface: Python
- Often best on benchmarks
- Nervana was working on a neural network chip
- Bought by Intel



Caffe

- Interface: C++, Python
- One of the earliest GPU supported
- Initial focus on computer vision (and CNNs)

 Course 6.S094:
 Lex Fridman:
 Website:

 Deep Learning for Self-Driving Cars
 fridman@mit.edu
 cars.mit.edu

Microsoft Cognitive Toolkit (CNTK)

- Interface: Custom Language (BrainScript), Python, C++, C#
- Multi GPU Support (scales very well)
- Mostly used at MS Research

Course 6.S094: Lex Deep Learning for Self-Driving Cars frid

Lex Fridman: fridman@mit.edu

In the Browser

- Keras.js
 - GPU Support
 - Full sized networks
 - Can use trained Keras models

- ConvNetJS
 - Built by a Andrej Karpathy
 - Good for explaining neural network concepts
 - Fun to play around with
 - Very few requirements
 - Full CNN, RNN, Deep Q Learning

References

All references cited in this presentation are listed in the following Google Sheets file:

https://goo.gl/9Xhp2t

