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Administrative

Website: cars.mit.edu

Contact Email: deepcars@mit.edu

Required:

* Create an account on the website.
* Follow the tutorial for each of the 2 projects.

Recommended:

e Ask questions

* Win competition!

=2

Benedikt Jenik

William Angell Spencer Dodd Dan Brown

Lex Fridman
Instructor TA TA TA TA
I I I mmm  Massachusetts Course 6.5094: Lex Fridman: Website: January

I I Institute of
Technology
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http://cars.mit.edu/
mailto:deepcars@mit.edu

Target Audience

You may be:
* New to programming
* New to machine learning

* New to robotics

What you will learn:

* An overview of deep learning methods:
* Deep Reinforcement Learning
e Convolutional Neural Networks
e Recurrent Neural Networks

* How deep learning can help improve each component of
autonomous driving: perception, localization, mapping, control,
planning, driver state

m: .faf:gfeus Course 6.5094: Lex Fridman: Website: January
nuology Deep Learning for Self-Driving Cars fridman@mit.edu cars.mit.edu 2017



Target Audience

Not many equation slides like the following:

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oox = Ox(L)

Proof. This is an algebraic space with the composition of sheaves F on X¢iqe we
have

Ox (F) = {morph1 xo, (G,F)}
where G defines an isomorphism F — F of O-modules. ]

* Though it would be more efficient, since the above is LaTeX code automatically
generated character by character with Recurrent Neural Networks (RNNs)

[35] Andrej Karpathy. “The Unreasonable Effectiveness of Recurrent Neural Networks." (2015).
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Guest Speakers

Mapping, Localization, and the Challenge of Autonomous Driving

lohn Leonard

Professor, MIT

Past, Present, and Future of Motion Planning in a Complex World

Sertac Karaman

Professor, MIT

From Research to Reality: Testing Self-Driving Cars on Boston Public Roads

Karl lagnemma

CEO, nuTonomy and Research Scientist, MIT

TBD

I | Chris Gerdes

Professor, Stanford

Hmm Massachusetts

Institute of
Technology

Course 6.5094: Lex Fridman: Website:
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Speed:

80 mph U

Cars Passed:

290

nfS

. N

Road Overlay:
None H
Simulation Speed:

Normal §

Project: DeepTraffic

DeepTraffic

Americans spend 8 billion hours stuck in traffic every year.

Deep neural networks can help!

N

//<! [COATAL

w

lanesSide = 1; //1;
patchesAhead = 19; //13;
patchesBehind = 8; //7;
trainlterations = 100000;

// begin from convnetjs example

-

N B SOw~-Nows

var num_actions = 5;

-

in-the-moment :)

13 var network_size = num_inputs * temporal_window + num_actions %

// a few things don't have var in front of them - they update already
existing variables the game needs

var num_inputs = (lanesSide = 2 + 1) = (patchesAhead + patchesBehind);

var temporal_window = 3; //1 // amount of temporal memory. @ = agent lives

Apply Code/Reset Net

ok oak oxk ogk o4qk osk o6k ozk o8k ogk 1k

Start Evaluatl

Save Code/Net to File

Value Function Approximating Neural Network:

in

t(135) fc(10) relu(10)fc(S)
HEN n

Load Code/Net from File

regression(5)

Submit Model to Competition

I Hmm Massachusetts
I I Institute of
Technology

Course 6.5094:

Deep Learning for Self-Driving Cars

Lex Fridman:
fridman@mit.edu
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Project: DeepTesla

LM e

(Ground Truth)

Course 6.5094:
Deep Learning for Self-Driving Cars

Lex Fridman:
fridman@

Current Time (secs)

Website:

Tesla Control Learned Control 6

{by Autopilot) {by Deep Neural Network) () ’ | I s !
— o 4r I i
/ 5 é:: 21 | 4
= - __J i

@ |
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January
2017



Schedule

Mon, Jan 9 Introduction to Deep Learning and Self Driving Cars

Learning to Move: Reinforcement Learning for Motion Planning

Tue, Jan 10
DeepTraffic: Solving Traffic with Deep Reinforcement Learning

Learning to Drive: End-to-End Learning for the Full Driving Task
Wed, Jan 11

DeepTesla: End-to-End Learning from Human and Autopilot Driving

Thu, Jan 12 | Karl lagnemma: From Research to Reality: Testing Self-Driving Cars on Boston Public Roads

Fri, Jan 13 John Leonard: Mapping, Localization, and the Challenge of Autonomous Driving

Tue, Jan 17 Chris Gerdes: TBD

Wed, Jan 18 | Sertac Karaman: Past, Present, and Future of Motion Planning in a Complex World

Thu, Jan 19 | Learning to Share: Driver State Sensing and Shared Autonomy

Eric Daimler: The Future of Artificial Intelligence Research and Development
Fri, Jan 20

Learning to Think: The Road Ahead for Human-Centered Atrtificial Intelligence

I I I mmm  Massachusetts Course 6.5094: Lex Fridman: Website: January

Institute of . - . . .
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Defining (Artificial) Intelligence

March 25, 1996

Special Purpose:
Can it achieve a well-defined finite
set of goals?

General Purpose:
Can it achieve poorly-defined
unconstrained set of goals?

sensors

percepts

environment

Atificial Intelligence
A Modern Approach

They already do, say scientists.

So what (if anything) is special
about the human mind?
(1995) (2002) (2009)
SR Massachusetis . Course 6.5094: Lex Fridman: Website:
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* Formal tasks: Playing board games, card
games. Solving puzzles, mathematical
and logic problems.

* Expert tasks: Medical diagnosis,
engineering, scheduling, computer
hardware design.

* Mundane tasks: Everyday speech,
written language, perception, walking,
object manipulation.

I I I mmm  Massachusetts Course 6.5094: Lex Fridman: Website: January
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How Hard is Driving?

Open Question:
Is driving closer to chess or to everyday conversation?

= =y
™
I - m:;f:::‘;fe“s Course 6.5094: Lex Fridman: Website: January
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Chess Pieces: Self-Driving Car Sensors

Interior Camera/ Smart Camera Rear—

Front View Driver Monitoring Remote Park Assist
Camera Systemn Park Assist/Self-Parking

Night Vislon/Surround
View Camera

Side Impact
Emergency Brake : mé’t
System and Adaptive

Cruise Control

Cross Traffic

Assist \\\O iy

ind Spot Detaction/
Surround View

External

Radar

Visible-light camera
LIDAR

Infrared camera
Stereo vision
GPS/IMU

CAN

® N o v A W N e

. Audio

Internal
1. Visible-light camera
2. Infrared camera

3. Audio

I oo :“aﬁaf"“:e“s Ref 171 Course 6.5094: Lex Fridman: Website:
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Chess Pieces: Self-Driving Car Tasks

* Localization and Mapping:
Where am I?

* Scene Understanding:
Where is everyone else?

 Movement Planning:
How do | get from A to B?

Driver State:
What's the driver up to?

I BE Massachusetts Ref 171 Course 6.5094: Lex Fridman: Website: January
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DARPA Grand Challenge Il (2006)

Result: Stanford’s Stanley wins

I 28 Massachusetis Ref . 173 Course 6.5094: Lex Fridman: Website: January
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DARPA Urban Challenge (2007)

Result: CMU’s Boss (Tartan Racing) wins

I BE Massachusetts Ref - 174 Course 6.5094: Lex Fridman: Website: January
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Industry Takes on the Challenge

Waymo / Google Self-Driving Car Tesla Autopilot

nuTonomy
I BE Massachusetts Ref . 175 Course 6.5094: Lex Fridman: Website: January
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If Driving is a Conversation:

How Hard is it to Pass the Turing Test?

1. Natural language processing to enable
it to communicate successfully
. 2. Knowledge representation to store
— information provided before or during

A B the interrogation
) 3. Automated reasoning to use the stored
EQ = ] information to answer questions and to
o draw new conclusions

Turing Test:
Can a computer be mistaken for a -
human more than 30% of the time?

I I I mmm  Massachusetts Course 6.5094: Lex Fridman: Website: January
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Neuron: Biological Inspiration for Computation

Lo wo

impulses carried m’ synapse
toward cell body i WoTo
branches
dendrites of axon Il bod
cel 0 ,
"\ JK AN
| /Aﬁ axon \% axon Z w;T; + b — : S
nuc eUS‘L_O B terminals T output axon

—> activation
?Vf \\\ impulses camed\r function
/ \ away from cell body b;%f
cell body

* Neuron: computational building * (Artificial) Neuron: computational
block for the brain building block for the “neural network”
 Human brain: * (Artificial) neural network:
* ~100-1,000 trillion synapses e ~1-10 billion synapses

Human brains have ~10,000 computational power than computer brains.

I - - Inassachusetts Ref . 118 Course 6.5094: Lex Fridman: Website: January
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Perceptron: Forward Pass

1. weigh 2.sumup 3. activate
I mmm  Massachusetts f . Course 6.5094: Lex Fridman: Website: January
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Perceptron Algorithm

. I
L
L]
.t L2 output
* T3

Provide training set of (input, output) pairs and run:
1. Initialize perceptron with random weights
2. For the inputs of an example in the training set, compute the Perceptron’s output

3. If the output of the Perceptron does not match the output that is known to be
correct for the example:
1. If the output should have been 0 but was 1, decrease the weights that had an input of 1.
2. If the output should have been 1 but was 0, increase the weights that had an input of 1.

4. Go to the next example in the training set and repeat steps 2-4 until the Perceptron
makes no more mistakes

N B Massachusetts

Institute of
Technology

Course 6.5094: Lex Fridman: Website:
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Neural Networks are Amazing

xq
‘7‘1 7 2’ 7 -‘ 1
{ iz, 9, x4)
Lo RTARY. ‘ 4
To output YYD
{ ez, 9, x4)

b.,;-.

Universality: For any arbitrary function f(x), there exists a neural
network that closely approximate it for any input x

Universality is an incredible property!* And it holds for just 1 hidden layer.
* Given that we have good algorithms for training these networks.

I BE Massachusetts Ref . 162 Course 6.5094: Lex Fridman: Website: January
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Special Purpose Intelligence

Final
Price
Estimate

Neighborhood /[ ‘
(mapped to | 1 )

an id number) \ /
b 4 \
S

I I I mmm  Massachusetts Course 6.5094: Lex Fridman:
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Neural Networks are Amazing:

General Purpose Intelligence

Policy Network:

raw pixels hidden layer

' 7/ probability of
-v;?;' . moving UP

k’%‘%”‘&

VYA AN . _

PP '

Za >\

X

Vs

* 80x80 image (difference image)
e 2 actions: up or down
* 200,000 Pong games

This is a step towards general purpose
artificial intelligence!

Andrej Karpathy. “Deep Reinforcement
Learning: Pong from Pixels.” 2016.
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Neural Networks are Amazing:

General Purpose Intelligence

uP DOWN UP UP DOWN DOWN DOWN UP
DOWN UP UP DOWN UP UP
uP UP DOWN DOWN DOWN DOWN uP

* Every (state, action) pair is rewarded
when the final result is a win.

* Every (state, action) pair is punished
when the final result is a loss.

The fact that this works at all is amazing!

It could be called “general intelligence” but not yet “human-level” intelligence...

WIN
LOSE
LOSE

WIN

I I I Hmm Massachusetts

I I I Refe rences: [63] Course 6.5094: Lex Fridman:
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Current Drawbacks

* Lacks Reasoning:

* Humans only need simple instructions:
“You’re in control of a paddle and you can move it up and down, and your
task is to bounce the ball past the other player controlled by Al.”

* Requires big data: inefficient at learning from data
* Requires supervised data: costly to annotate real-world data
* Need to manually select network structure

* Needs hyperparameter tuning for training:
* Learning rate
e Loss function
* Mini-batch size
* Number of training iterations
* Momentum: gradient update smoothing
* Optimizer selection

* Defining a good reward function is difficult...

I BE Massachusetts Ref . 163, 64 Course 6.5094: Lex Fridman: Website: January
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Current Drawbacks

Defining a good reward function is difficult... Coast Runners: Discovers local pockets of
high reward ignoring the “implied” bigger picture goal of finishing the race.

(&

v

In addition, specifying a reward function for self-driving cars raises ethical questions...

I el :"‘aﬁa:"“fe“s Ref . 163, 64 Course 6.5094: Lex Fridman: Website:
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Deep Learning Breakthroughs: What Changed?

* Compute
CPUs, GPUs, ASICs

* Organized large(-ish) datasets
Imagenet

e Algorithms and research:
Backprop, CNN, LSTM

* Software and Infrastructure
Git, ROS, PR2, AWS, Amazon Mechanical Turk, TensorFlow, ...

* Financial backing of large companies
Google, Facebook, Amazon, ...

IMAGENET
Accuracy Rate

sTraditional CV  » Deep Leamning
90%
80%
. '
70% o . :
, . 3 i
60% s o
t ®
50% °
° ®
30% '
20%
10%
0%
2009 2010 2011 2012 2013 2014 2015 2016
I m - :V'ats,faf"“?e“s Course 6.5094: Lex Fridman: Website: January
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€ Backfed input Cell

) wout Celt

A4 Kaisy Input Cell

@ riddencen

. Probablstic Hidden Cell

@ soiking Hiden cell

. OutputCell

@ retchinout Duteut Cell

@ ecoretca
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@ oifferent Memory Cel
Kormel

) convolution or Pool

Markov Chain (MC)

Generative Adversarial Netwoek (GAN] Liquid State Machine (LSM)  Extreme Learning Machine (ELIVT)

sl 2 )
Kiviwivi

Deep Resicdual Network (0AN)

Hopfield Network (HM)  Baltzmann Machine (BM}  Restrictad BI (AEAT)

ARRRA

Useful Deep Learning Terms

Amostly complete chart of

Neural Networks ...

©2016 Fldor van Veen - asimauinstinute org

Perceptran (P) Feed Forward (FF) Radisl Basis Netwark (RBF)

o o8 X

Recurrent Neural Network (RNN) Long / Short Term Memaory (LSTM)  Gated Recurrent 'L_J\mt((nﬁ\l,l
o o

WA
R RREARIN
Auto Encader (AE) Sparse AE (SAE)

Variational AE (VAE) Denorsing AE (DAE}

\ , A
\ e &
QIR

Deep Belief Natwork (DBN)

Ov%
50
O\\b
Deconvolutianal Network (DN] Deep Convolutional Inverse Graphics Network (DCIGN)
. 7’ W -
- g v 8 )
\O/O\ >_< /0\0 O/O\
- \o/ >< ~BC ~NE
& o @S A A
o %e X O~ o g

Echo State Metwork (ESN}

Kohonen Network (KN} Support Vector Machine [SYM) Neural Turing Maching (NTM)

¢

* Basic terms:
* Deep Learning = Neural Networks
* Deep Learning is a subset of Machine Learning

Terms for neural networks:
* MLP: Multilayer Perceptron
* DNN: Deep neural networks
* RNN: Recurrent neural networks
* LSTM: Long Short-Term Memory
* CNN or ConvNet: Convolutional neural networks

* DBN: Deep Belief Networks

* Neural network operations:
e Convolution
* Pooling
e Activation function
* Backpropagation

Asimov Institute. “A mostly complete chart of neural networks.”
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Neural Networks: Proceed with Caution

How much more | realise
there is to know

How much | think |

know (%)
How much | actually know
: : Expertise
The The The
“I know nothing” : “IPm an expert” : “I know nothing”
I II o :"‘aﬁa:’"“fe“s Ref - 50 Course 6.5094: Lex Fridman: Website: January
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Deep Learning is Representation Learning

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

[20] Goodfellow et al. "Deep learning." (2017).
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Representation Matters

Cartesian coordinates Polar coordinates

I - m:ﬁa:::g?etts R f . 20 Lex Fridman: ebsite:
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Deep Learning is Representation Learning

Deep learning Example:
Shallow
Example: autoencoders

MLPs

Example: Example:
Logistic Knowledge

regression bases

Representation learning

Machine learning

I BE Massachusetts Ref 120 Course 6.5094: Lex Fridman: Website: January
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Performance

Deep Learning: Scalable Machine Learning

Amount of Data

Deep
Learning

Most Learning

Algorithms

Output

I

Qutput

Output

Mapping from

features
Additional
> Mapping from Mapping from layers of more
Output
foatures features abstract
features
Hand- Hand- e
; g 5 Simple
designed designed Features
: features
progra features
Input Input Iuput [upnt
_ Ir)(v‘("[)
Classic

Rule-based

systems

machine

learning

learning

Representation

learning
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Applications: Object Classification in Images

motor scooter

container ship

mite container ship motor scooter legpard
Il black widow lifeboat go-kart jaguar
[ cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
\F=}- i
I L \/ bz \pense
27 IR N\ L \
\J '. . \ ]]
MA‘[V.‘- N &27 3] ..’_':' S J & . ‘LOO

3 48

Alex Krizhevsky, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
convolutional neural networks." Advances in neural information processing systems. 2012.

I I I - Massachusetis Course 6.5094: Lex Fridman: Website: January
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Fause: Progress on ImageNet

ImageNet Classification Error (Top 5)

20
15
1.7
10
7.3
| — ——— — l
0 — i -
2012 (AloxNet) 2013 (ZF) 2014 (VGG) 2014 (GoogLoNel) 2015 (ResNet) Today
(GoogleNet-vd)
o Massachusetts . Course 6.5094: Lex Fridman: Website: January
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Computer Vision is Hard:

lllumination Variability

Course 6.5094: Lex Fridman: Website: January
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Computer Vision is Hard:

Pose Variability and Occlusions

Figure 1. The deformable and truncated cat. Cats exhibit (al-

Parkhi et al. "The truth about cats and dogs.” 2011.
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Computer Vision is Hard:

Intra-Class Variability

Bombay

\ S |
Egyptian : Ragdoll

Persian

Setter

1
Fad, , «
NC ot R /3
¢ N » e - pod

&£ Great Pyrenees > #a German Shorthaired

Chihuahua

Parkhi et al. "Cats and dogs." 2012.
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Object Recognition / Classification

C; S C; S; n, n;
mput feature maps  feature maps feature maps feature maps output
32x32 _28_:_(_58_ Jax14  10x10 5x35
N \T TN
N — " N\ G % o-\» 0,
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B e=—— L \\
N i =
5x5 . 2x2 5x5 \ \ O
convolution \ subsampling convolution

\
O@;f’

N

2x2 » \\ O fully \

\ \ conn conuec:ed

classlﬁcation

mite contamer shi motor scooter eopard
mite container sgip motor scooter legpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
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“tabby cat”

Nl \ | l
Ew‘b%‘bm"b PR IRy

conv olutlonalization

Segmentation

tabby cat heatmap

© o0
56 &Qq m()q Q©

Original Ground Truth FCN-8

Source: Long et al. Fully Convolutional Networks for Semantic Segmentation. CVPR 2015.
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Paouse: Object Detection

R-CNN: Regions with CNN features

=] warped region aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions
I o Massachusetts Course 6.5094: Lex Fridman: Website: January
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Applications: Object Detection and Localization in Images

VGG-19 34-layer plain 34-layer residual
image image image
e, [
33 conv, 64
output e
Seediz 3G conv, 128
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[ 3a m!v, 512 | [ mmﬂ'v, 128 | [3a m:v, 128
[3@cwm,s2 | 33,128 | [33cm, 18
33 cm'v, 128 33 conv, 128
[ 3Gcomv,128 | [ 3aconv, 128
[ 3acom, 128 | [ 3aconv, 128
:;‘:"‘1‘: pool, /2 [ 33conv,256,2_| [ mnm = -j """""
[ 38wwsz | [36wm356 | 3G 2% | . V
[[3@cm,52 | [ 3ccom, 256 | [ 33comw2% |
[ 3@cms2 | [ 3com, 26 | [ 3a D
[ 38cwsnz | [ dom 26 | [ S com, 2% ]
[ 3acom, 256 | [ 3a m?w %6 |
[ 3Gconv256 | [3a o, 3% |
[ 33,256 | [3a co:v, D
[ 3ccom, 256 | [ 33com256 |
[ 3a m!w %6 | [ 3a D
[T3a c:w 256 | [ cn:v, 2% |
[ 33 m:u, 236 | [ 3 m:v, 2% |
b pool, /2 [(3@comvs2,2 | [T33cony, su,};"]. .....
[T3a coﬂ'v, 512 | [(38cmsn ] . '
[ 3ccnmsz | [ 3dcony, su"
. . . . . [ 3dcmwsz | [ mco:v. 512
He Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Su. e
[ ] [

33 conv, 512 3x3 conv, 512

"Deep residual learning for image recognition." (2015). Y~ - s

[ fc 4096 ] [ fc 1000 ] [ fc 1000 ]

fc 1000

mmm  Massachusetts Course 6.5094: Lex Fridman: Website: January
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Applications: Colorization of Images

Color ab Lab Image

v convS co
&t I diated & bous | dllated
512 ;
ﬂ| ﬂ i
(s, b) pmbabu ly

313 54 2

Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Colorful Image Colorization." (2016).
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Applications: Automatic Translation of Text in Images

MOY k
Mork — Dark

Google Translate

|||i|- E:?:%;fem References: [30]



Flavors of Neural Networks

one to one one to many many to one many to many many to many

u . .

Recurrent Neural Networks

“Vanilla”
Neu ral Andrej Karpathy. “The Unreasonable Effectiveness
Networks of Recurrent Neural Networks." (2015).
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Applications: Handwriting Generation from Text

Text --- up to 100 characters, lower case letters work best

Input: Deep Learning for Self Driving Cars
Output: D@ep Le T ’n?
][‘Of/ S\Q[T['\prf'(//'nj Co/rg

Alex Graves. "Generating sequences with
recurrent neural networks." (2013).
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Applications: Character-Level Text Generation

Naturalism and decision for the majority of Arab
countries' capitalide was grounded by the Irish
language by [[John Clair]], [[An Imperial Japanese
Revolt]], associated with Guangzham's sovereignty.
His generals were the powerful ruler of the Portugal in
the [[Protestant Immineners]], which could be said to
be directly in Cantonese Communication, which
followed a ceremony and set inspired prison, training.

Andrej Karpathy. “The Unreasonable Effectiveness of
Recurrent Neural Networks." (2015).

Code: https://github.com/karpathy/char-rnn

coa JE= :

_“-wo N wo| Tt
.

T 1

- ..ou‘-—-.|2gg *.r;gg s
=
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https://github.com/karpathy/char-rnn

Applications: Character-Level Text Generation

Life Is About The Weather!

Life Is About The (Wild) Truth About Human-Rights

Life Is About The True Love Of Mr. Mom

Life Is About Where He Were Now

Life Is About Kids

Life Is About What It Takes If Being On The Spot Is Tough
Life Is About... An Eating Story

Life Is About The Truth Now

The meaning of life is literary recognition.
The meaning of life is the tradition of the ancient human reproduction

o " E Andrej Karpathy. “The Unreasonable Effectiveness of
Recurrent Neural Networks." (2015).

7
T
]
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- o&o B
=9 Caw \l“GNOJ X
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wo Nowo|
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Code: https://github.com/karpathy/char-rnn

Lex Fridman: Website: January
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Applications: Image Caption Generation

e £ - - > A purple camera with a woman. 3
Ff 4 i | A woman holding a camera in a crowd.
A woman holding a cat. _p

a man sitting on a couch with a dog R TeTInE " #1 Awoman holding a
a man sitting on a chair with a dog in his lap ki sl

dog (1.00) man {0.93) sitting (0 83) couch (0.66)

SR Massachusetis B Course 6.5094: Lex Fridman: Website:
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Applications: Image Question Answering

COCOQA 33827

What is the color of the cat?
Ground truth: black
IMG+BOW: black (0.55)
2-VIS+LSTM: black (0.73)
BOW: gray (0.40)

COCOQA 33827a

What is the color of the couch?
Ground truth: red

IMG+BOW: red (0.65)
2-VIS+LSTM: black (0.44)
BOW: red (0.39)

DAQUAR 1522

How many chairs are there?
Ground truth: two
IMG+BOW: four (0.24)
2-VIS+BLSTM: one (0.29)
LSTM: four (0.19)

DAQUAR 1520

How many shelves are there?
Ground truth: three
IMG+BOW: three (0.25)
2-VIS+BLSTM: two (0.48)
LSTM: two (0.21)

Image ﬂgjuw Linear
CNN

21 56 - 09 .01
One Two Red Bird
‘ Softmax © @ o O |
O . ﬁ
‘ Word Embedding |
“H(;w" “mzzny” “boI)ks“
t=il t=2 t=T

COCOQA 14855

Where are the ripe bananas sitting?
Ground truth: basket

IMG+BOW: basket (0.97)
2-VIS+BLSTM: basket (0.58)

BOW: bowl (0.48)

COCOQA 14855a

What are in the basket?
Ground truth: bananas
IMG+BOW: bananas (0.98)
2-VIS+BLSTM: bananas (0.68)
BOW: bananas (0.14)

DAQUAR 585

What is the object on the chair?
Ground truth: pillow
IMG+BOW: clothes (0.37)
2-VIS+BLSTM: pillow (0.65)
LSTM: clothes (0.40)

DAQUAR 585a

Where is the pillow found?
Ground truth: chair
IMG+BOW: bed (0.13)
2-VIS+BLSTM: chair (0.17)
LSTM: cabinet (0.79)

Ren et al. "Exploring models and data for image

guestion answering." 2015.

Code: https://github.com/renmengye/imageqga-public

I Hmm Massachusetts
I I Institute of
Technology

References: [40]
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https://github.com/renmengye/imageqa-public

Applications: Video Description Generation

Correct descriptions. Relevant but incorrect
descnpﬂons

/ A
S2VT: A small bus is running into a building.

S2VT: A man is cutting a piece of a pair of a paper.

Venugopalan et al.
"Sequence to sequence-video to text." 2015.

[ s |+ v |+ s |+ s | s LA v |of s A s o s |
v

A/ m:n i/ talzng <Ef,s> Code: https://vsubhashini.github.io/s2vt.html
L JL )
Encodir:g stage Decodir:g stage time
SR Massachusetis . Course 6.5094: Lex Fridman: Website: January
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Applications: Modeling Attention Steering

Jimmy Ba, Volodymyr Mnih, and Koray
@ B Kavukcuoglu. "Multiple object recognition
a2 & B = with visual attention." (2014).

N | — |

e #e  ess e
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Applications: Drawing with Selective Attention

Reading Writing
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Gregor et al. "DRAW: A recurrent neural network for image generation." (2015). Code: https://github.com/ericjang/draw
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https://github.com/ericjang/draw

Applications: Adding Audio to Silent Film

0.5
-0.5 ‘
13.50 13.75 14.00 14.25
7 Predicted soundtrack
Silent video
g
é{
Owens, Andrew, Phillip Isola, Josh McDermott, i
Antonio Torralba, Edward H. Adelson, and William T. 5{
Freeman. "Visually Indicated Sounds." (2015).
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Moravec’s Paradox: The “Easy” Problems are Hard
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Moravec’s Paradox: The “Easy” Problems are Hard

IRPLEX, M%) LQ/ L FAIRPLEX

-—-!_-: et
-
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Question: Why? Answer: Data

Visual perception: 540 millions years of data
Bipedal movement: 230+ million years of data
Abstract thought: 100 thousand years of data

“Encoded in the large, highly evolved sensory and motor portions of the human brainis a
billion years of experience about the nature of the world and how to survive in it....
Abstract thought, though, is a new trick, perhaps less than 100 thousand years old. We have
not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it.”

- Hans Moravec, Mind Children (1988)

Hans Moravec (CMU) Rodney Brooks (MIT) Marvin Minsky (MIT)

I BE Massachusetts Ref 16 7. 11 Course 6.5094: Lex Fridman: Website: January
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Walking is Hard. How Hard is Driving?
Human performance: 1 fatality per 100,000,000 miles

Error rate for Al to improve on: 0.000001%

Challenges:
* Show

* Heavy rain

Big open parking lots

Parking garages

Any pedestrian behaving irresponsibly or just unpredictably

Reflections, dynamics blinding ones

Merging into a high-speed stream of oncoming traffic

I - :“ats.faf"“fens Ref - 144 Course 6.5094: Lex Fridman: Website: Januar
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Google Self-Driving Car: Driver Disengagements

Number  Autonomous miles

Month Disengages on public roads
2014/09 2 4207.2
2014/10 19 23971.1
2014/11 21 15836.6
2014/12 43 9413.1
2015/01 53 18192.1
2015/02 14 18745.1
2015/03 30 22204.2
2015/04 51 31927.3
2015/05 13 38016.8
2015/06 11 42046.6
2015/07 29 34805.1
2015/08 7 38219.8
2015/09 16 36326.6
2015/10 16 47143.5
2015/11 16 43275.9

Total 341 424331
I ies™  References: [77] Decp LoamingforSelfDrving Cars frgman@miteds  caremiveds 2017



Google Self-Driving Car: Driver Disengagements

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Cause 2014 2014 2014 2014 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 2015 Total

disengage for

weather

conditions

during testing 0 0 0 0 1 5 0 6 0 0 0 0 0 0 1 13

disengage for a

recklessly

behaving road

user 1 0 1 1 1 3 3 7 0 0 0 2 1 0 3 23

disengage for
hardware
discrepancy 0 1 0 0 2 1 0 1 0 5 8 1 8 8 4 39

disengage for

unwanted

maneuver of

the vehicle 0 3 6 14 i ] 1 3 2 1 0 3 2 0 3 2 55

disengage for a
perception
discrepancy 1 2 318 19 2 20 30 4 4 8 0 4 3 1 119

disengage for
incorrect
behavior
prediction of
other traffic

participants 0 2 2 0 1 0 2 0 0 0 0 0 0 1 0 8
disengage for a

software

discrepancy 0 1 9 9 14 2 1 5 8 2 9 2 3 1 4 80

disengage for
construction

zone during

testing 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 3

disengage for

emergency

vehicle during

testing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Total 2 19 21 43 53 14 30 51 13 11 29 7 16 16 16 341

I u - :V'ats_fafh“?e‘ts Ref - 177 Course 6.5094: Lex Fridman: Website: January
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Robustness:

>99.6% Confidence in the Wrong Answer

robin cheetah armadillo lesser panda

NSOV N N AR R
P AN A

s 1

e N N A AR

S O R N
m;;av»»»»wa«

king penguin starfish baseball electric guitar

Nguyen et al. "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images." 2015.
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Robustness:

Fooled by a Little Distortion

correct +distort ostrich +distort otrich '

Szegedy et al. "Intriguing properties of neural networks." 2013.
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Mark | Perceptron

Frank Rosenblatt

400 pixel image input

Weights encoded in potentiometers

Weight updated by electric motors

e ?’:-.l L et 5D | Ny

W .
il W )
v

Ehe New York imes

NEW NAVY DEVICE LEARNS BY DOING

July 8, 1958

“The Navy revealed the embryo of an electronic
computer today that it expects will be able to walk,
talk, see, write, reproduce itself and be conscious of
its existence... Dr. Frank Rosenblatt, a research
psychologist at the Cornell Aeronautical Laboratory,
Buffalo, said Perceptrons might be fired to the
planets as mechanical space explorers”
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Al Winters Smaller episodes:

e 1966: the failure of machine translation

Two major episodes: « 1970: the abandonment of connectionism
* 1974-80 * 1971-75: DARPA's frustration with the Speech
. 1987-93 Understanding Research program

e 1973: the large decrease in Al research in the UK
in response to the Lighthill report.

* 1973-74: DARPA's cutbacks to academic Al
research in general

e 1987: the collapse of the Lisp machine market

* 1988: the cancellation of new spending on Al by
the Strategic Computing Initiative

e 1993: expert systems slowly reaching the bottom

* 1990s: the quiet disappearance of the fifth-
generation computer project's original goals.

“In no part of the field have discoveries made so far
produced the major impact that was then promised.”

I o m:ts.:a;::g?eus Ref . 118 Course 6.5094: Lex Fridman: Website:
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The Seasons of Deep Learning

e 1940s-1960s: Cybernetics

* Biological learning (1943)
* Perceptron (1958)

* 1980s-1990s: Connectionism
* Backpropagation

* 2006-: Deep Learning

0.000250 T T T T I T

—— cybernetics
0.000200 H

— - (connectionism + neural networks) |, N

0.000150 f - - - - - - - bs 3w a SRER R S SRR R SRR e S EER R . s wens o £55 nes)

0.000100 f- - - - - - - L LT UL L LT L ELLE TS x

0.000050 f= - - - - - -- TP i T e P banc sa tans o

Frequency of Word or Phrase

0.000000 ! s e = e e = 4 T l l
1940 1950 1960 1970 1980 1990 2000
Year
p Massachusetis C 6.5094: Lex Fridman: Website: J
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34 Summer of Deep Learning

Interest over time @

o o
G | ds: “D L ing”
oogle trends: “Deep Learning
M hu . : i : ite:
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Proceed with Caution:
What’s Next for Deep Learning?

(5 year vision)

* llya Sutskever, Research Director of OpenAl:
Deeper models, models that need fewer examples for training.

e Christian Szegedy, Senior Research Scientist at Google:
Become so efficient that they will be able to run on cheap mobile devices.

* Pieter Abbeel, Associate Professor in Computer Science at UC Berkeley:
Significant advances in deep unsupervised learning and deep reinforcement
learning.

* lan Goodfellow, Senior Research Scientist at Google:
Neural networks that can summarize what happens in a video clip, and will be
able to generate short videos. Neural networks that model the behavior of
genes, drugs, and proteins and then used to design new medicines.

» Koray Kavukcuoglu & Alex Graves, Research Scientists at Google DeepMind:
An increase in multimodal learning, and a stronger focus on learning that
persists beyond individual datasets.

e Charlie Tang, Machine Learning group, University of Toronto:
Deep learning algorithms ported to commercial products, much like how the
face detector was incorporated into consumer cameras in the past 10 years.

I II mmm  Massachusetts Course 6.5094: Lex Fridman: Website: January
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expectations On the
‘ Rise

Supplier
proliferation

Mass media
hype begins

Early adopters
investigate

First-generation

products, high price,
lots of customization
needed

Startup companies
first round of venture
capital funding

Gartner Hype Cycle

At the Sliding Into Climbing Entering
Peak the Trough the Slope the Plateau
Activity beyond

early adopters

Negative press begins
High-growth adoption

phase starts: 20% to 30%
of the potential
audience has adopted
the innovation

Supplier consolidation
and failures

Second/thrid
rounds of . Methodologies and best
venture capital practices developing

funding

(

Less than 5 percent of
the potential audience
has adopted fully

Third-generation products,
out of the box, product
suites

Second-generation
products, some services

References: [21]
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Technology Peak of Inflated Trough of Plateau of
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New-vehicle market share High-disruption

of autonomous vehicles, % scenario
Conditionally

100
autonomous!

920 Fully
autonomous?

80

70

60 . .

Availability
50 in popular Low-disruption

" Commercial introduction ﬁqo;(:is;;ner scenario
by new tech players and . S
p¥emium OEl\F;Issy Technical/regulatory Conditionally
30 barriers delaying autonomous
commercial-scale
20 introduction
10 Fully
autonomous
0 i
2020 2025 l 2030 2035 i 2040
Gradual ramp-up of Commercial Low perceived value or
manufacturing capacity introduction by negative publicity following
by tech players mass-market critical incidents, causing
leaders slow consumer uptake
Factors in disruption scenarios High disruption Low disruption
Regulatory challenges Fast Gradual
Safe, reliable technical solutions Comprehensive Incomplete
Consumer acceptance, willingness to pay Enthusiastic Limited
mmm  Massachusetts . Course 6.5094: Lex Fridman: Website: January
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35

30

25

20

(in $8)

5

0

Sensor modules market value for autonomous cars
from 2015 to 2030 (in $B)

2014 2015 2016 2017 2018

B Dead reckoning sensors
B LIDARs
B Micro bolometers

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

TOTAL SENSOR MODULES IN $M

M Stereo cameras M LR radars
B Cameras for surround B SR radars

Cameras for long distance

B Ultra sound sensors

I Hmm Massachusetts
I I Institute of
Technology
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Attention to (Al) Drivers: Proceed with Caution

Camera Spoofing LIDAR Spoofing

correct +ditort

mmm  Massachusetts Course 6.5094: Lex Fridman: Webstte: o
L e References: [68, 72] '
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TensorFlow

Interface: Python, (C++)

Automatic Differentiation
Multi GPU, Cluster Support

Currently most popular

Google

I - m:;f:::‘;fe“s Course 6.5094: Lex Fridman: Website: Januar
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Keras

* On top of Tensorflow (and Theano)
* Interface: Python
* Goal: provide a simplified interface
e Also: TF Learn, TF Slim
IIIiI- Egﬁz‘z%gzem gzz:)sfezrsr?iiz:for Self-Driving Cars If-SZrireia(rj\nC;)an:i:t.edu \cl\a:fst?iﬁf.:edu Jzi)nll;ary



T ® Torh

!

-

* Used by researchers doing lower level (closer to the details)
neural net work

* |nterface: Lua

* Fragmented across different plugins

facebook

352
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theano

* Interface: Python (tight NumPy integration)
* One of the earlier frameworks with GPU support

* Encourages low-level tinkering

Université f"‘\ ‘ Montreal Institute for Learning
de Montréal | Algorithms

I | “ t 1 Course 6.5094: Lex Fridman: Website: January
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cuDNN

NVIDIA.

* The library that most frameworks use for doing the actual
computation

* Implements primitive neural network functions in CUDA on
the GPU

assachusetts Course 6.5094: Lex Fridman: Website:
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* Multi GPU Support (scales well)

* Interface: Python, R, Julia, Scala, Go, Javascript ...

amazon

I BE Massachusetts Course 6.5094: Lex Fridman: Website: January
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Nneon

framework by nervana

* Interface: Python
* Often best on benchmarks
* Nervana was working on a neural network chip
* Bought by Intel
- t l ®
Illil- Egﬁg{%eﬁs gzzsfeirsr?ii:for Self-Driving Cars If-r(?Zrlrzlraiztrj1n@‘7lbanr11i:t.edu \cl\e:(restff:i?edu Jzi)nll;ary



Caffe

* Interface: C++, Python
* One of the earliest GPU supported

* Initial focus on computer vision (and CNNs)

Berkeley

Artificial Intelligence Research Laboratory
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Microsoft Cognitive Toolkit (CNTK)

* Interface: Custom Language (BrainScript), Python, C++, C#
* Multi GPU Support (scales very well)
* Mostly used at MS Research

== Microsoft
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In the Browser

* Keras.js
* GPU Support
* Full sized networks
e Can use trained Keras models

* ConvNetlS

* Built by a Andrej Karpathy

* Good for explaining neural network concepts
* Fun to play around with
* Very few requirements

* Full CNN, RNN, Deep Q Learning
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